238 research outputs found

    Endokrines System und Schock: Therapeutische Perspektiven

    Get PDF

    Pneumonia and in-hospital mortality in the context of neurogenic oropharyngeal dysphagia (NOD) in stroke and a new NOD step-wise concept

    Get PDF
    The aim of our work was to develop a step-wise concept for investigating neurogenic oropharyngeal dysphagia (NOD) that could be used by both trained nursing staff as well as swallowing therapists and physicians to identify patients with NOD at an early stage and so enable an appropriate therapy to be started. To achieve this objective, we assessed uniform terminology and standard operating procedures (SOP) in a new NOD step-wise concept. In-house stroke mortality rates and rates of pneumonia were measured over time (2003–2009) in order to show improvements in quality of care. In addition, outcome measures in a stroke-unit monitoring system were studied after neurorehabilitation (day 90) assessing quality of life (QL) and patient feedback. An investigation that was carried out in the context of internal and external quality assurance stroke projects revealed a significant correlation between the NOD step-wise concept and low rates of pneumonia and in-house mortality. The quality of life measures show a delta value that can contribute to “post-stroke” depression. The NOD step-wise concept (NSC) should, on the one hand, be capable of being routinely used in clinical care and, on the other, being able to fulfil the requirements of being scientifically based for investigating different stages of swallowing disorders. The value of our NSC relates to the effective management of clinical resources and the provision of adequate diagnostic and therapeutic options for different grades of dysphagia. We anticipate that our concept will provide substantial support to physicians, as well as swallowing therapists, in clinical settings and rehabilitation facilities, thereby promoting better guidance and understanding of neurogenic dysphagia as a concept in acute and rehabilitation care, especially stroke-unit settings

    Language experience impacts brain activation for spoken and signed language in infancy: Insights from unimodal and bimodal bilinguals

    Get PDF
    Recent neuroimaging studies suggest that monolingual infants activate a left lateralised fronto-temporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near infrared spectroscopy (fNIRS) data from 60 hearing infants (4-to-8 months): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, while sign language elicited activation in the right temporo-parietal area. A significant difference in brain lateralisation was observed between groups. Activation in the posterior temporal region was not lateralised in monolinguals and bimodal bilinguals, but right lateralised in response to both language modalities in unimodal bilinguals. This suggests that experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPA) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language, and that unimodal bilingual experience has greater impact on early brain lateralisation than bimodal bilingual experience

    Morphological brain differences between adult stutterers and non-stutterers

    Get PDF
    BACKGROUND: The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS) are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. METHODS: Adults with PDS (n = 10) and controls (n = 10) matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM) the brains of stutterers and non-stutterers were compared with respect to white matter (WM) and grey matter (GM) differences. RESULTS: We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars triangularis), the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. CONCLUSIONS: These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question

    Acquired and congenital disorders of sung performance: A review.

    Get PDF
    Many believe that the majority of people are unable to carry a tune. Yet, this widespread idea underestimates the singing abilities of the layman. Most occasional singers can sing in tune and in time, provided that they perform at a slow tempo. Here we characterize proficient singing in the general population and identify its neuronal underpinnings by reviewing behavioral and neuroimaging studies. In addition, poor singing resulting from a brain injury or neurogenetic disorder (i.e., tone deafness or congenital amusia) is examined. Different lines of evidence converge in indicating that poor singing is not a monolithic deficit. A variety of poor-singing "phenotypes" are described, with or without concurrent perceptual deficits. In addition, particular attention is paid to the dissociations between specific abilities in poor singers (e.g., production of absolute vs. relative pitch, pitch vs. time accuracy). Such diversity of impairments in poor singers can be traced to different faulty mechanisms within the vocal sensorimotor loop, such as pitch perception and sensorimotor integration

    Integrating Functional and Diffusion Magnetic Resonance Imaging for Analysis of Structure-Function Relationship in the Human Language Network

    Get PDF
    The capabilities of magnetic resonance imaging (MRI) to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernicke's (WA), Broca's (BA) and supplementary motor area (SMA), using a combination of blood oxygen level dependent (BOLD) and diffusion tensor MRI.Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. for use in diagnosing and determining disease progression and recovery

    Altered oscillatory brain dynamics after repeated traumatic stress

    Get PDF
    Kolassa I-T, Wienbruch C, Neuner F, et al. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry. 2007;7(1): 56.BACKGROUND: Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. METHODS: Using magnetoencephalographic (MEG-based) source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD) in comparison to 97 controls. RESULTS: PTSD patients showed elevated production of focally generated slow waves (1-4 Hz), particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. CONCLUSION: The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala
    corecore