2,855 research outputs found

    Expression of Rb2/p130 in breast and endometrial cancer: correlations with hormone receptor status

    Get PDF
    Rb2/p130 is a member of the retinoblastoma family of proteins, consisting of Rb, Rb2 and p107, which are important negative regulators of cell cycle progression and differentiation. While Rb2 downregulation was observed in several malignant tumours including endometrial cancer, the role of p130 in breast carcinomas is still unknown. We investigated Rb2 protein expression in tumour tissue from 68 mammary and 41 endometrial carcinomas, 4 mammary cell lines, and normal tissue samples. Therefore, we performed Western blot experiments for Rb2, Rb, and the oestrogen and progesterone receptors (ER, PR-A, PR-B). Weak or absent Rb2 expression was more often found in endometrial (59%) than in mammary carcinomas (24%). We found significant positive correlations of Rb2 expression with Rb, ER, and PR-B in breast cancer samples, and of Rb2 with Rb, PR-A, PR-B, and younger age in endometrial carcinomas. No significant associations with histological grading, stage, nodal involvement, or Ki67 staining were detected. Rb2 mRNA expression was studied by semi-quantitative RT-PCR in 56 endometrial or mammary tissue samples and correlated significantly with Western blot results. Our results indicate that loss of Rb2 expression, mostly by transcriptional down-regulation, may be associated with the development and dedifferentiation of most endometrial and a subset of mammary carcinomas. © 2001 Cancer Research Campaign http://bjcancer.co

    Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    Full text link
    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming `tungsten bronzes'. Similar optical effects are observed upon removing oxygen from WO_3, although the electronic properties are slightly different. Here we present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. Next, this was extended to a study of fractional doping in the Na_xWO_3 system (0 < x < 1). A linear variation in cell parameter, and a systematic change in the position of the Fermi level up into the valence band was observed with increasing x. In the underdoped WO_3-x system however, the Fermi level undergoes a sudden jump into the conduction band at around x = 0.2. Lastly, three compounds of a layered WO_4&#215;a,wdiaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO_3 compound which relate well to experimental UV-visible spectroscopy results.Comment: 12 pages, 16 figure

    Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen

    Get PDF
    We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter

    Anisotropy of the upper critical field in superconductors with anisotropic gaps. Anisotropy parameters of MgB2

    Full text link
    The upper critical field Hc2 is evaluated for weakly-coupled two-band superconductors. By modeling the actual bands and the gap distribution of MgB2 by two Fermi surface spheroids with average parameters of the real material, we show that H_{c2,ab}/H_{c2,c} increases with decreasing temperature in agreement with available data.Comment: 4 pages, 2 figure

    Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed dd- and s-wave superconductor

    Full text link
    Based on the linearized Eilenberger equations, the upper critical field (Hc2)(H_{c2}) of mixed d- and s-wave superconductors has been microscopically studied with an emphasis on the competing effects of mass anisotropy and spin Zeeman coupling. We find the mass anisotropy always enhance Hc2H_{c2} while the Zeeman interaction suppresses Hc2H_{c2}. As required by the thermodynamics, we find Hc2H_{c2} is saturated at zero temperature. We compare the theoretical calculations with recent experimental data of YBa2_{2}Cu3_{3}O7−+AFw−delta_{7-+AFw-delta}.Comment: To appear in PRB in Feb. 200

    Entropy and Spin Susceptibility of s-wave Type-II Superconductors near Hc2H_{c2}

    Get PDF
    A theoretical study is performed on the entropy SsS_{\rm s} and the spin susceptibility χs\chi_{\rm s} near the upper critical field Hc2H_{c2} of s-wave type-II superconductors with arbitrary impurity concentrations. The changes of these quantities through Hc2H_{c2} may be expressed as [Ss(T,B)−Ss(T,0)]/[Sn(T)−Ss(T,0)]=1−αS(1−B/Hc2)≈(B/Hc2)αS[S_{\rm s}(T,B)-S_{\rm s}(T,0)]/[S_{\rm n}(T)-S_{\rm s}(T,0)]=1-\alpha_{S}(1-B/H_{c2})\approx (B/H_{c2})^{\alpha_{S}}, for example, where BB is the average flux density and SnS_{\rm n} denotes entropy in the normal state. It is found that the slopes αS\alpha_{S} and αχ\alpha_{\chi} at T=0 are identical, connected directly with the zero-energy density of states, and vary from 1.72 in the dirty limit to 0.5∌0.60.5\sim 0.6 in the clean limit. This mean-free-path dependence of αS\alpha_{S} and αχ\alpha_{\chi} at T=0 is quantitatively the same as that of the slope αρ(T=0)\alpha_{\rho}(T=0) for the flux-flow resistivity studied previously. The result suggests that Ss(B)S_{\rm s}(B) and χs(B)\chi_{\rm s}(B) near T=0 are convex downward (upward) in the dirty (clean) limit, deviating substantially from the linear behavior ∝B/Hc2\propto B/H_{c2}. The specific-heat jump at Hc2H_{c2} also shows fairly large mean-free-path dependence.Comment: 8 pages, 5 figure

    Superconducting gap anisotropy of LuNi2B2C thin films from microwave surface impedance measurements

    Full text link
    Surface impedance measurements of LuNi2B2C superconducting thin films as a function of temperature have been performed down to 1.5 K and at 20 GHz using a dielectric resonator technique. The magnetic penetration depth closely reproduces the standard B.C.S. result, but with a reduced value of the energy gap at low temperature. These data provide evidence for an anisotropic s-wave character of the order parameter symmetry in LuNi2B2C. From the evaluation of the real part of complex conductivity, we have observed constructive (type II) coherence effects in the electromagnetic absorption below Tc.Comment: 15 pages, 4 figure

    Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films

    Full text link
    In Raman spectra of cuprate superconductors the gap shows up both directly, via a redistribution of the electronic background, the so-called "2Delta peaks", and indirectly, e.g. via the renormalization of phononic excitations. We use a model that allows us to study the redistribution and the related phonon self-energy effects simultaneously. We apply this model to the B_1g phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution enables us to investigate under- and overdoped samples. While various self-energy effects can be explained by the strength and energy of the 2\Delta peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure

    Magnesium isotopes of the bulk solar wind from Genesis diamond‐like carbon films

    Get PDF
    NASA's Genesis Mission returned solar wind (SW) to the Earth for analysis to derive the composition of the solar photosphere from solar material. SW analyses control the precision of the derived solar compositions, but their ultimate accuracy is limited by the theoretical or empirical models of fractionation due to SW formation. Mg isotopes are “ground truth” for these models since, except for CAIs, planetary materials have a uniform Mg isotopic composition (within ≀1‰) so any significant isotopic fractionation of SW Mg is primarily that of SW formation and subsequent acceleration through the corona. This study analyzed Mg isotopes in a bulk SW diamond‐like carbon (DLC) film on silicon collector returned by the Genesis Mission. A novel data reduction technique was required to account for variable ion yield and instrumental mass fractionation (IMF) in the DLC. The resulting SW Mg fractionation relative to the DSM‐3 laboratory standard was (−14.4‰, −30.2‰) ± (4.1‰, 5.5‰), where the uncertainty is 2ÆĄ SE of the data combined with a 2.5‰ (total) error in the IMF determination. Two of the SW fractionation models considered generally agreed with our data. Their possible ramifications are discussed for O isotopes based on the CAI nebular composition of McKeegan et al. (2011)

    Analytical Formulation of the Local Density of States around a Vortex Core in Unconventional Superconductors

    Full text link
    On the basis of the quasiclassical theory of superconductivity, we obtain a formula for the local density of states (LDOS) around a vortex core of superconductors with anisotropic pair-potential and Fermi surface in arbitrary directions of magnetic fields. Earlier results on the LDOS of d-wave superconductors and NbSe2_2 are naturally interpreted within our theory geometrically; the region with high intensity of the LDOS observed in numerical calculations turns out to the enveloping curve of the trajectory of Andreev bound states. We discuss experimental results on YNi2_2B2_2C within the quasiclassical theory of superconductivity.Comment: 13 pages, 16 figure
    • 

    corecore