58 research outputs found

    Upshaw-Schulman症候群の糸球体障害には補体活性とADAMTS13欠損が関連している可能性がある

    Get PDF
    Introduction: Upshaw-Schulman syndrome (USS) is a congenital form of thrombotic thrombocytopenic purpura (TTP) associated with loss-of-function mutations in the ADAMTS13 gene, possibly leading to aberrant complement activation and vascular injury. However, USS is extremely rare, and there have been no systematic studies correlating histopathological severity with local ADAMTS13 expression and complement activation. Materials and methods: Here, we compared histopathological features, ADAMTS13 immunoreactivity, and immunoreactivity of complement proteins C4d and C5b-9 among renal biopsy tissues from five USS cases, ten acquired TTP cases, and eleven controls. Results: Pathological analysis revealed chronic glomerular sclerotic changes in the majority of USS cases (4 of 5), with minor glomerular pathology in the remaining case. In two of these four severe cases, more than half of the glomerular segmental sclerosis area was localized in the perihilar region. The average number of ADAMTS13-positive cells per glomerulus was significantly lower in USS cases than controls (p < 0.05). Conversely, C4d staining was significantly more prevalent in the glomerular capillary walls of USS cases than controls (p < 0.05), while C5b-9 staining did not differ significantly among groups. Conclusions: These findings suggest that the severity of glomerular injury in USS is associated with deficient ADAMTS13 expression and local complement activation, particularly in vascular regions with higher endothelial shear stress. We suggest that C4d immunostaining provides evidence for complement-mediated glomerular damage in USS.博士(医学)・甲第792号・令和3年3月15日Copyright © 2018 Elsevier Ltd. All rights reserved

    Cellular analysis of SOD1 protein-aggregation propensity and toxicity: a case of ALS with slow progression harboring homozygous SOD1-D92G mutation

    Get PDF
    Mutations within Superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS), accounting for approximately 20% of familial cases. The pathological feature is a loss of motor neurons with enhanced formation of intracellular misfolded SOD1. Homozygous SOD1-D90A in familial ALS has been reported to show slow disease progression. Here, we reported a rare case of a slowly progressive ALS patient harboring a novel SOD1 homozygous mutation D92G (homD92G). The neuronal cell line overexpressing SOD1-D92G showed a lower ratio of the insoluble/soluble fraction of SOD1 with fine aggregates of the misfolded SOD1 and lower cellular toxicity than those overexpressing SOD1-G93A, a mutation that generally causes rapid disease progression. Next, we analyzed spinal motor neurons derived from induced pluripotent stem cells (iPSC) of a healthy control subject and ALS patients carrying SOD1-homD92G or heterozygous SOD1-L144FVX mutation. Lower levels of misfolded SOD1 and cell loss were observed in the motor neurons differentiated from patient-derived iPSCs carrying SOD1-homD92G than in those carrying SOD1-L144FVX. Taken together, SOD1-homD92G has a lower propensity to aggregate and induce cellular toxicity than SOD1-G93A or SOD1-L144FVX, and these cellular phenotypes could be associated with the clinical course of slowly progressive ALS

    Decreased expression of MHC class II and cathepsin E in dendritic cells might contribute to impaired induction of antigen-specific T cell response in NC/Nga mice

    Get PDF
    NC/Nga (NC) mice are an animal model for human atopic dermatitis. We found that induction of antigen (Ag)-specific T cell response is diminished in ovalbumin (OVA)- immunized NC mice. Ability of Ag presentation in NC mouse dendritic cells (DCs) was significantly weaker than that in BALB/c and DBA/2 mouse DCs. Expression levels of MHC class II molecules and cathepsin E in NC mouse DCs were significantly lower that those in BALB/c and DBA/2 mouse DCs. These results indicate that low expression levels of MHC class II and cathepsin E might contribute to the defect in induction of Ag-specific T cells in NC mice

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae

    Full text link
    We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evolutionary stage with a longer superhump period, middle stage with systematically varying periods, final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods less than 0.08 d show positive period derivatives. Contrary to the earlier claim, we found no clear evidence for variation of period derivatives between superoutburst of the same object. We present an interpretation that the lengthening of the superhump period is a result of outward propagation of the eccentricity wave and is limited by the radius near the tidal truncation. We interpret that late stage superhumps are rejuvenized excitation of 3:1 resonance when the superhumps in the outer disk is effectively quenched. Many of WZ Sge-type dwarf novae showed long-enduring superhumps during the post-superoutburst stage having periods longer than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently, mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives and are excellent candidate for the systems around or after the period minimum of evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte

    ビタミン E摂取量が母体の健康状態と胎児の発育に及ぼす影響について ―実験動物を用いての検討―

    Get PDF
    This study is focused on overdose of vitamin E. In particular,we examined its influence on pregnancy using a laboratory animal. It showed no change of hemoglobin level and triglyceride level in blood by the difference of vitamin E dose. However,it showed that antioxygenation of the vitamin E was shown because the fall of TBARS value in the brain that was taken have much vitamin E intakes. The cause was not clear,the vitamin E intake of inappropriate quantity may cause pregnancy abnormality. Because, pregnancy abnormal ratios increased that growth insufficiency of the fetus was observed low group and high group in vitamin E. It suggested that the surplus intake of the vitamin E have possibilities to cause bad influence to pregnancy

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore