75 research outputs found

    Animal board invited review: Opportunities and challenges in using GWP* to report the impact of ruminant livestock on global temperature change

    Get PDF
    Ruminant livestock is a large contributor of CH4 emissions globally. Assessing how this CH4 and other greenhouse gases (GHG) from livestock contribute to anthropogenic climate change is key to understanding their role in achieving any temperature targets. The climate impacts of livestock, as well as other sectors or products/services, are generally expressed as CO2-equivalents using 100-year Global Warming Potentials (GWP100). However, the GWP100 cannot be used to translate emission pathways of short-lived climate pollutants (SLCPs) emissions to their temperature outcomes. A key limitation of handling long- and short-lived gases in the same manner is revealed in the context of any potential temperature stabilisation goals: to achieve this outcome, emissions of long-lived gases must decline to net-zero, but this is not the case for SLCPs. A recent alternative metric, GWP* (so-called ‘GWP-star’), has been proposed to overcome these concerns. GWP* allows for simple appraisals of warming over time for emission series of different GHGs that may not be obvious if using pulse-emission metrics (i.e. GWP100). In this article, we explore some of the strengths and limitations of GWP* for reporting the contribution of ruminant livestock systems to global temperature change. A number of case studies are used to illustrate the potential use of the GWP* metric to, for example, understand the current contribution of different ruminant livestock production systems to global warming, appraise how different production systems or mitigations compare (having a temporal element), and seeing how possible emission pathways driven by changes in production, emissions intensity and gas composition show different impacts over time. We suggest that for some contexts, particularly if trying to directly infer contributions to additional warming, GWP* or similar approaches can provide important insight that would not be gained from conventional GWP100 reporting. © 2023This research is supported by MarĂ­a de Maeztu excellence accreditation 2018-2022 (Ref. MDM-2017-0714), funded by MCIN/AEI/10.13039/501100011033/; and by the Basque Government through the BERC 2022-2025 program. Agustin del Prado is financed by the programme Ramon y Cajal from the Spanish Ministry of Economy, Industry and Competitiveness (RYC-2017-22143) and Ikerbasque. JL acknowledges funding from Wellcome Trust, Our Planet Our Health (Livestock, Environment and People—LEAP), award number 205212/Z/16/Z. FM and SH are funded by the California Air Resources Board (CARB35C10_18ISD025

    Mapping phosphorus hotspots in Sydney's organic wastes: A spatially explicit inventory to facilitate urban phosphorus recycling

    Full text link
    Phosphorus is an essential element for food production whose main global sources are becoming scarce and expensive. Furthermore, losses of phosphorus throughout the food production chain can also cause serious aquatic pollution. Recycling urban organic waste resources high in phosphorus could simultaneously address scarcity concerns for agricultural producers who rely on phosphorus fertilisers, and waste managers seeking to divert waste from landfills to decrease environmental burdens. Recycling phosphorus back to agricultural lands however requires careful logistical planning to maximize benefits and minimize costs, including processing and transportation. The first step towards such analyses is quantifying recycling potential in a spatially explicit way. Here we present such inventories and scenarios for the Greater Sydney Basin's recyclable phosphorus supply and agricultural demand. In 2011, there was 15 times more phosphorus available in organic waste than agricultural demand for phosphorus in Sydney. Hypothetically, if future city residents shifted to a plant-based diet, eliminated edible food waste, and removed animal production in the Greater Sydney Basin, available phosphorus supply would decrease to 7.25 kt of phosphorus per year, even when accounting for population growth by 2031, and demand would also decrease to 0.40 kt of phosphorus per year. Creating a circular phosphorus economy for Sydney, in all scenarios considered, would require effective recycling strategies which include transport outside of the Greater Sydney Basin. These spatially explicit scenarios can be used as a tool to facilitate stakeholders engagement to identify opportunities and barriers for appropriate organic waste recycling strategies

    The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)

    Get PDF
    Purpose Life cycle assessment (LCA) has been used to assess freshwater-related impacts according to a new water footprint framework formalized in the ISO 14046 standard. To date, no consensus-based approach exists for applying this standard and results are not always comparable when different scarcity or stress indicators are used for characterization of impacts. This paper presents the outcome of a 2-year consensus building process by the Water Use in Life Cycle Assessment (WULCA), a working group of the UNEP-SETAC Life Cycle Initiative, on a water scarcity midpoint method for use in LCA and for water scarcity footprint assessments. Methods In the previous work, the question to be answered was identified and different expert workshops around the world led to three different proposals. After eliminating one proposal showing low relevance for the question to be answered, the remaining two were evaluated against four criteria: stakeholder acceptance, robustness with closed basins, main normative choice, and physical meaning. Results and discussion The recommended method, AWARE, is based on the quantification of the relative available water remaining per area once the demand of humans and aquatic ecosystems has been met, answering the question “What is the potential to deprive another user (human or ecosystem) when consuming water in this area?” The resulting characterization factor (CF) ranges between 0.1 and 100 and can be used to calculate water scarcity footprints as defined in the ISO standard. Conclusions After 8 years of development on water use impact assessment methods, and 2 years of consensus building, this method represents the state of the art of the current knowledge on how to assess potential impacts from water use in LCA, assessing both human and ecosystem users’ potential deprivation, at the midpoint level, and provides a consensus-based methodology for the calculation of a water scarcity footprint as per ISO 14046

    Assessing the rural food environment for advancing sustainable healthy diets: Insights from India

    Get PDF
    World agricultural production has seen significant growth in the past four decades, yet malnutrition remains a persistent problem, particularly in the global south and more so in the rural areas. Need for a holistic approach to food systems is becoming crucial in designing policies that support the transition to sustainable and healthy diets. The present study is aimed to understand the rural food environment in the Telangana state in southern India by analyzing the combination of external and personal factors affecting food choices, attitudes, and consumption behavior. We developed a scoring-based methodology to assess the external and personal domains and dimensions to understand the food environment. The results showed that rural households favored carbohydrate-rich food groups obtained mostly from their own production or subsidized sources. On the other hand, protein and micronutrient-rich food groups were neglected due to affordability and preference for taste, cultural factors, and the limitations of external food environment. The findings of this study provide a deeper understanding of the food environment in low and middle-income countries (LMICs) conext. By highlighting the interplay between agriculture, food environments, and nutrition outcomes, this study contributes to the ongoing effort to address the global malnutrition crisis and support the development of healthier and more sustainable food systems. These findings can be useful to guide policy actions towards achieving food security and nutrition in the rural regions where food environments are under rapid transitions in the LMICs

    Area of Concern: A new paradigm in life cycle assessment for the development of footprint indicators

    Get PDF
    Purpose As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to Life Cycle Assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental Life Cycle Impact Assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications. Methods The task force has worked from the perspective that footprints should be underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the Area of Protection paradigm, and the core LCA standards ISO14040/44. Results In parallel to Area of Protection, we introduce Area of Concern as the basis for a universal footprint definition. In the same way that LCA uses impact category indicators to assess impacts that follow a common cause-effect pathway toward Areas of Protection, footprint metrics address Areas of Concern. The critical difference is that Areas of Concern are defined by the interests of stakeholders in society rather than the LCA community. In addition, Areas of Concern are stand-alone and not necessarily part of a framework intended for comprehensive environmental performance assessment. The Area of Concern paradigm is needed to support the development of footprints in a way that fulfils their distinctly different purpose. It is also needed as a mechanism to extricate footprints from some of the provisions of ISO 14040/44 which are not considered relevant. Specific issues are identified in relation to double counting, aggregation, and the selection of relevant indicators. Conclusions The universal footprint definition and related terminology introduced in this paper create a foundation that will support the development of footprint metrics in parallel with LCA

    Life Cycle Impact Assessment

    Get PDF
    International audienceThis chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory's information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated by LCA software, but the underlying principles, models and factors should still be well understood by practitioners to ensure the insight that is needed for a qualified interpretation of the results.This chapter teaches the fundamentals of LCIA and opens the black box of LCIA with its characterisation models and factors to inform the reader about: (1) the main purpose and characteristics of LCIA, (2) the mandatory and optional steps of LCIA according to the ISO standard, and (3) the science and methods underlying the assessment for each environmental impact category. For each impact category, the reader is taken through (a) the underlying environmental problem, (b) the underlying environmental mechanism and its fundamental modelling principles, (c) the main anthropogenic sources causing the problem and (d) the main methods available in LCIA. An annex to this book offers a comprehensive qualitative comparison of the main elements and properties of the most widely used and also the latest LCIAmethods for each impact category, to further assist the advanced practitioner to make an informed choice between LCIA methods
    • 

    corecore