3 research outputs found
Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode
This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%
New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater
International audienceA new hybrid process that integrates adsorption on sawdust and electrochemical oxidation on a boron doped diamond anode was investigated for the treatment of dilute solutions containing phenol. In such combined process the pollutant is adsorbed until saturation and electrochemical oxidation has been used for both the regeneration of adsorbant and the pollutant removal. Phenol is used as model of pollutant and the efficiency of the regeneration of loaded sawdust has been compared with that of activated carbon (AC), a widely used adsorbent due to its high adsorption capacity which results from its high porosity. The study highlights the effect of electrolysis in the increase of the phenol desorption during the treatment of adsorbents. The regeneration efficiency of AC after 1 cycle of adsorption and regeneration is only 59% due to the electropolymerisation of the strongly adsorbed phenol. By contrast, the electrochemical regeneration of sawdust led to increase the adsorption capacity multiple adsorption and electrochemical regeneration cycles led to an enhancement of adsorption capacity of the sawdust with a complete removal of phenol and the possible reuse of the electrolysis solution