2,054 research outputs found
Neurophysiological findings relevant to echolocation in marine animals
A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz)
GLM permutation - nonparametric inference for arbitrary general linear models
Introduction: Permutation methods are finding growing use in neuroimag-
ing data analyses (e.g. randomise in FSL, SnPM in SPM,
XBAMM/BAMM/CAMBA, etc). These methods provide ex-
act control of false positives, make only weak assumptions, and
allow nonstandard types of statistics (e.g. smoothed variance t-
test). With fast and inexpensive computing, there would seem
few reasons not to use nonparametric methods.
A significant limitation of these methods, however, is the lack of
flexibility with respect to the experimental design and nuisance
variables. Each specific design dictates the type of exchange-
ability of null data, and hence how to permute. Nuisance effects
(e.g. age) render data non-exchangeable even when the effect of
interest is null. Hence, even something as simple as ANCOVA
has no exact permutation test.
Recently there has been an active literature on approximate–
but accurate–permutation tests for 2-variable regression, one
effect of interest, one nuisance (see review by Anderson &
Robinson [1]). Here we extend and evaluate these methods
for use with an arbitrary General Linear Model (GLM)
Surface Structures of Silicon and Germanium
Si and Ge were cleaved on the (111) plane under ultra high vacuum and exposed to O and subsequent heat treatment. LEED and spot photometric measurements were taken. Cleaved surfaces for both Si and Ge gave the expected (2 x 1) structure. Results for O exposure were qualitatively for Si and Ge. The 1/2 orders disappeared after exposure to approx = 10 exp - exp 7. Integral orders started to weaken at 10 exp -6 to 10 exp - exp 2 torr min., disappearing at 10 exp -1 torr min. Heat treatment of Si at 900 deg C for several seconds restored the integral orders and further heating gave a new pattern with 1/3 orders. Exposure to 2 x 10 exp -6 torr min O without further heating weakened the fractional orders and at 10 exp -5 torr min they disappeared. Integral orders remained after further heating in O. For Ge integral orders were not restored after 0 exposure until heat treatment had continued at 550 deg C for several min. The (1 x 1) structure disappeared after heating at 590 deg C in 7 x 10 exp -1 torr O and further heating at 590 deg C without O restored the integral order Variations of intensity with voltage were measured for the (00) and (20) spots. The results supported a model proposed by Haneman (Phys. Rev., 1968, 170, 705) involving two kinds of atom sites on the cleaved surface. 20 ref.--E.J.S
Processing of DMSP magnetic data: Handbook of programs, tapes, and datasets
The DMSP F-7 satellite was an operational Air Force meteorological satellite which carried a magnetometer for geophysical measurements. The magnetometer was located within the body of the spacecraft in the presence of large spacecraft fields. In addition to stray magnetic fields, the data have inherent position and time inaccuracies. Algorithms were developed to identify and remove time varying magnetic field noise from the data. These algorithms are embodied in an automated procedure which fits a smooth curve through the data and then identifies outliers and which filters the predominant Fourier component of noise from the data. Techniques developed for Magsat were then modified and used to attempt determination of the spacecraft fields, of any rotation between the magnetometer axes and the spacecraft axes, and of any scale changes within the magnetometer itself. Software setup and usage are documented and program listings are included in the Appendix. The initial and resulting data are archived on magnetic cartridge and the formats are documented
Diffeomorphic Demons using Normalised Mutual Information, Evaluation on Multi-Modal Brain MR Images
The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent large-deformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic demons implementation using the analytical gradient of Normalised Mutual Information (NMI) in a conjugate gradient optimiser. We report the first qualitative and quantitative assessment of the demons for inter-modal registration. Experiments to spatially normalise real MR images, and to recover simulated deformation fields, demonstrate (i) similar accuracy from NMI-demons and classical demons when the latter may be used, and (ii) similar accuracy for NMI-demons on T1w-T1w and T1w-T2w registration, demonstrating its potential in multi-modal scenarios
Longitudinal multivariate tensor- and searchlight-based morphometry using permutation testing
Tensor based morphometry [1] was used to detect
statistically significant regions of neuroanatomical
change over time in a comparison between 36 probable
Alzheimer's Disease patients and 20 age- and sexmatched
controls. Baseline and twelve-month repeat
Magnetic Resonance images underwent tied spatial
normalisation [10] and longitudinal high-dimensional
warps were then estimated. Analyses involved univariate
and multivariate data derived from the longitudinal
deformation fields. The most prominent findings were
expansion of the fluid spaces, and contraction of the
hippocampus and temporal region. Multivariate measures
were notably more powerful, and have the potential to
identify patterns of morphometric difference that would
be overlooked by conventional mass-univariate analysis
Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images
The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent largedeformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic demons implementation using the analytical gradient of Normalised Mutual Information (NMI) in a conjugate gradient optimiser. We report the first qualitative and quantitative assessment of the demons for inter-modal registration. Experiments to spatially normalise real MR images, and to recover simulated deformation fields, demonstrate (i) similar accuracy from NMI-demons and classical demons when the latter may be used, and (ii) similar accuracy for NMI-demons on T1w-T1w and T1w-T2w registration, demonstrating its potential in multi-modal scenarios
Are All Static Black Hole Solutions Spherically Symmetric?
The static black hole solutions to the Einstein-Maxwell equations are all
spherically symmetric, as are many of the recently discovered black hole
solutions in theories of gravity coupled to other forms of matter. However,
counterexamples demonstrating that static black holes need not be spherically
symmetric exist in theories, such as the standard electroweak model, with
electrically charged massive vector fields. In such theories, a magnetically
charged Reissner-Nordstrom solution with sufficiently small horizon radius is
unstable against the development of a nonzero vector field outside the horizon.
General arguments show that, for generic values of the magnetic charge, this
field cannot be spherically symmetric. Explicit construction of the solution
shows that it in fact has no rotational symmetry at all.Comment: 6 pages, plain TeX. Submitted to GRF Essay Competitio
- …