199 research outputs found
Exoplanets imaging with a Phase-Induced Amplitude Apodization Coronagraph - I. Principle
Using 2 aspheric mirrors, it is possible to apodize a telescope beam without
losing light or angular resolution: the output beam is produced by
``remapping'' the entrance beam to produce the desired light intensity
distribution in a new pupil. We present the Phase-Induced Amplitude Apodization
Coronagraph (PIAAC) concept, which uses this technique, and we show that it
allows efficient direct imaging of extrasolar terrestrial planets with a
small-size telescope in space. The suitability of the PIAAC for exoplanet
imaging is due to a unique combination of achromaticity, small inner working
angle (about 1.5 ), high throughput, high angular resolution and
large field of view. 3D geometrical raytracing is used to investigate the
off-axis aberrations of PIAAC configurations, and show that a field of view of
more than 100 in radius is available thanks to the correcting
optics of the PIAAC. Angular diameter of the star and tip-tilt errors can be
compensated for by slightly increasing the size of the occulting mask in the
focal plane, with minimal impact on the system performance. Earth-size planets
at 10 pc can be detected in less than 30s with a 4m telescope. Wavefront
quality requirements are similar to classical techniques.Comment: 35 pages, 16 figures, Accepted for publication in Ap
An edge-on translucent dust disk around the nearest AGB star L2 Puppis - VLT/NACO spectro-imaging from 1.04 to 4.05 microns and VLTI interferometry
As the nearest known AGB star (d=64pc) and one of the brightest (mK-2), L2
Pup is a particularly interesting benchmark object to monitor the final stages
of stellar evolution. We report new lucky imaging observations of this star
with the VLT/NACO adaptive optics system in twelve narrow band filters covering
the 1.0-4.0 microns wavelength range. These diffraction limited images reveal
an extended circumstellar dust lane in front of the star, that exhibits a high
opacity in the J band and becomes translucent in the H and K bands. In the L
band, extended thermal emission from the dust is detected. We reproduce these
observations using Monte-Carlo radiative transfer modeling of a dust disk with
the RADMC-3D code. We also present new interferometric observations with the
VLTI/VINCI and MIDI instruments. We measure in the K band an upper limit to the
limb-darkened angular diameter of theta_LD = 17.9 +/- 1.6 mas, converting to a
maximum linear radius of R = 123 +/- 14 Rsun. Considering the geometry of the
extended K band emission in the NACO images, this upper limit is probably close
to the actual angular diameter of the star. The position of L2 Pup in the
Herzsprung-Russell diagram indicates that this star has a mass around 2 Msun
and is probably experiencing an early stage of the asymptotic giant branch. We
do not detect any stellar companion of L2 Pup in our adaptive optics and
interferometric observations, and we attribute its apparent astrometric wobble
in the Hipparcos data to variable lighting effects on its circumstellar
material. We however do not exclude the presence of a binary companion, as the
large loop structure extending to more than 10 AU to the North-East of the disk
in our L band images may be the result of interaction between the stellar wind
of L2 Pup and a hidden secondary object. The geometric configuration that we
propose, with a large dust disk seen almost edge-on, appears particularly
favorable to test and develop our understanding of the formation of bipolar
nebulae.Comment: 16 pages, 15 figure
Properties of the CO and HO MOLsphere of the red supergiant Betelgeuse from VLTI/AMBER observations
13 pages, 11 figures, accepted for publication in Astronomy & AstrophysicsInternational audienceContext. Betelgeuse is the closest red supergiant (RSG), therefore it is well suited to study the complex processes in its atmosphere that lead to the chemical enrichment of the interstellar medium. Aims. We intend to investigate the shape and composition of the close molecular layer (also known as the MOLsphere) that surrounds the star. This analysis is part of a wider program that aims at understanding the dynamics of the circumstellar envelope of Betelgeuse. Methods. On January and February 2011, Betelgeuse was observed using the VLTI/AMBER interferometer in the H and K bands. Using the medium spectral resolution of the instrument (), we were able to investigate the carbon monoxide band heads and the water-vapor bands. We used two different approaches to analyse our data: model fitting both in the continuum and absorption lines and then fit with a RHD simulation. Results. Using the continuum data we derive a uniform disk diameter of mas, a power law type limb-darkened disk diameter of mas and a limb-darkening exponent of . Within the absorption lines, using a single layer model, we obtain parameters of the MOLsphere. Using a RHD simulation, we unveil the convection pattern in the visibilities. Conclusions. We derived a new value of the angular diameter of Betelgeuse in the K band continuum. Our observations in the absorption lines are well reproduced by a molecular layer at 1.2 stellar radii containing both CO and HO. The visibilities at higher spatial frequencies are matching a convection pattern in a RHD simulation
High-Resolution Infrared Spectroscopy of the Brown Dwarf Epsilon Indi Ba
We report on the analysis of high-resolution infrared spectra of the newly
discovered brown dwarf Epsilon Indi Ba. This is the closest known brown dwarf
to the solar system, with a distance of 3.626 pc. Spectra covering the ranges
of 2.308-2.317 microns and 1.553-1.559 microns were observed at a spectral
resolution of R=50,000 with the Phoenix spectrometer on the Gemini South
telescope. The physical paramters of effective temperature and surface gravity
are derived by comparison to model spectra calculated from atmospheres computed
using unified cloudy models. An accurate projected rotational velocity is also
derived.Comment: 9 pages, 3 figures. Astrophysical Journal Letters, in pres
The Search for Stellar Companions to Exoplanet Host Stars Using the CHARA Array
Most exoplanets have been discovered via radial velocity studies, which are
inherently insensitive to orbital inclination. Interferometric observations
will show evidence of a stellar companion if it sufficiently bright, regardless
of the inclination. Using the CHARA Array, we observed 22 exoplanet host stars
to search for stellar companions in low-inclination orbits that may be
masquerading as planetary systems. While no definitive stellar companions were
discovered, it was possible to rule out certain secondary spectral types for
each exoplanet system observed by studying the errors in the diameter fit to
calibrated visibilities and by searching for separated fringe packets.Comment: 26 pages, 5 tables, 8 figure
The NOAO Data Lab virtual storage system
Collaborative research/computing environments are essential for working with the next generations of large astronomical data sets. A key component of them is a distributed storage system to enable data hosting, sharing, and publication. VOSpace is a lightweight interface providing network access to arbitrary backend storage solutions and endorsed by the International Virtual Observatory Alliance (IVOA). Although similar APIs exist, such as Amazon S3, WebDav, and Dropbox, VOSpace is designed to be protocol agnostic, focusing on data control operations, and supports asynchronous and third-party data transfers, thereby minimizing unnecessary data transfers. It also allows arbitrary computations to be triggered as a result of a transfer operation: for example, a file can be automatically ingested into a database when put into an active directory or a data reduction task, such as Sextractor, can be run on it. In this paper, we shall describe the VOSpace implementations that we have developed for the NOAO Data Lab. These offer both dedicated remote storage, accessible as a local file system via FUSE, and a local VOSpace service to easily enable data synchronization
The NOAO Data Lab: Science-Driven Development
The NOAO Data Lab aims to provide infrastructure to maximize community use of the high-value survey datasets now being collected with NOAO telescopes and instruments. As a science exploration framework, the Data Lab allow users to access and search databases containing large (i.e. terabyte-scale) catalogs, visualize, analyze, and store the results of these searches, combine search results with data from other archives or facilities, and share these results with collaborators using a shared workspace and/or data publication service. In the process of implementing the needed tools and services, specific science cases are used to guide development of the system framework and tools. The result is a Year-1 capability demonstration that (fully or partially) implements each of the major architecture components in the context of a real-world science use-case. In this paper, we discuss how this model of science-driven development helped us to build a fully functional system capable of executing the chosen science case, and how we plan to scale this system to support general use in the next phase of the project
Angular Diameters and Effective Temperatures of Twenty-five K Giant Stars from the CHARA Array
Using Georgia State University's CHARA Array interferometer, we measured
angular diameters for 25 giant stars, six of which host exoplanets. The
combination of these measurements and Hipparcos parallaxes produce physical
linear radii for the sample. Except for two outliers, our values match angular
diameters and physical radii estimated using photometric methods to within the
associated errors with the advantage that our uncertainties are significantly
lower. We also calculated the effective temperatures for the stars using the
newly-measured diameters. Our values do not match those derived from
spectroscopic observations as well, perhaps due to the inherent properties of
the methods used or because of a missing source of extinction in the stellar
models that would affect the spectroscopic temperatures
- …
