1,454 research outputs found

    Occurrence of the Old World bug Megacopta cribraria (Fabricius) (Heteroptera: Plataspidae) in Georgia: a serious home invader and potential legume pest

    Get PDF
    Specimens of Megacopta cribraria (Fabricius) were collected in northern Georgia in late October 2009, where they were invading homes in large numbers. This is the first known occurrence of this species and the family Plataspidae in the New World. Megacopta cribraria was previously known from Asia and Australia. A key is provided to separate Plataspidae from other families of Pentatomoidea in America North of Mexico. A diagnosis and figures are provided to facilitate recognition of M. cribraria. Reported host plants and other aspects of the biology of this species are reviewed. Megacopta cribraria is considered a pest of numerous legumes in Asia, has the potential to provide biological control of kudzu, Pueraria montana var. lobata (Willd.) Ohwi, (Fabaceae) and likely will continue to be a household pest in the vicinity of kudzu fields as well as become a pest of North American legume crops

    Measurement and Compensation of Horizontal Crabbing at the Cornell Electron Storage Ring Test Accelerator

    Full text link
    In storage rings, horizontal dispersion in the rf cavities introduces horizontal-longitudinal (xz) coupling, contributing to beam tilt in the xz plane. This coupling can be characterized by a "crabbing" dispersion term {\zeta}a that appears in the normal mode decomposition of the 1-turn transfer matrix. {\zeta}a is proportional to the rf cavity voltage and the horizontal dispersion in the cavity. We report experiments at the Cornell Electron Storage Ring Test Accelerator (CesrTA) where xz coupling was explored using three lattices with distinct crabbing properties. We characterize the xz coupling for each case by measuring the horizontal projection of the beam with a beam size monitor. The three lattice configurations correspond to a) 16 mrad xz tilt at the beam size monitor source point, b) compensation of the {\zeta}a introduced by one of two pairs of RF cavities with the second, and c) zero dispersion in RF cavities, eliminating {\zeta}a entirely. Additionally, intrabeam scattering (IBS) is evident in our measurements of beam size vs. rf voltage.Comment: 5 figures, 10 page

    Accelerator Design for the CHESS-U Upgrade

    Full text link
    During the summer and fall of 2018 the Cornell High Energy Synchrotron Source (CHESS) is undergoing an upgrade to increase high-energy flux for x-ray users. The upgrade requires replacing one-sixth of the Cornell Electron Storage Ring (CESR), inverting the polarity of half of the CHESS beam lines, and switching to single-beam on-axis operation. The new sextant is comprised of six double-bend achromats (DBAs) with combined-function dipole-quadrupoles. Although the DBA design is widely utilized and well understood, the constraints for the CESR modifications make the CHESS-U lattice unique. This paper describes the design objectives, constraints, and implementation for the CESR accelerator upgrade for CHESS-U

    The BetaCage, an ultra-sensitive screener for surface contamination

    Get PDF
    Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocontamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha- and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas per keV-m2^2-day and 0.1 alphas per m2^2-day, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95×\times95 cm2^2 sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    Central limit theorems for the real eigenvalues of large Gaussian random matrices

    Get PDF
    Let G be an N×N real matrix whose entries are independent identically distributed standard normal random variables Gij∼N(0,1). The eigenvalues of such matrices are known to form a two-component system consisting of purely real and complex conjugated points. The purpose of this paper is to show that by appropriately adapting the methods of [E. Kanzieper, M. Poplavskyi, C. Timm, R. Tribe and O. Zaboronski, Annals of Applied Probability 26(5) (2016) 2733–2753], we can prove a central limit theorem of the following form: if λ1,…,λNR are the real eigenvalues of G, then for any even polynomial function P(x) and even N=2n, we have the convergence in distribution to a normal random variable 1E(NR)−−−−−√⎛⎝∑j=1NRP(λj/2n−−√)−E∑j=1NRP(λj/2n−−√)⎞⎠→N(0,σ2(P)) as n→∞, where σ2(P)=2−2√2∫1−1P(x)2dx

    The Littlewood-Gowers problem

    Full text link
    We show that if A is a subset of Z/pZ (p a prime) of density bounded away from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier transform) of the characterstic function of A is bounded below by an absolute constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references

    Large droplet impact on water layers

    Get PDF
    The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer
    corecore