36 research outputs found

    New possibilities for research on reef fish across the continental shelf of South Africa

    Get PDF
    [From introduction] Subtidal research presents numerous challenges that restrict the ability to answer fundamental ecological questions related to reef systems. These challenges are closely associated with traditional monitoring methods and include depth restrictions (e.g. safe diving depths for underwater visual census), habitat destruction (e.g. trawling), mortality of target species (e.g. controlled angling and fish traps), and high operating costs (e.g. remotely operated vehicles and large research vessels. Whereas many of these challenges do not apply or are avoidable in the shallow subtidal environment, the difficulties grow as one attempts to sample deeper benthic habitats. This situation has resulted in a paucity of knowledge on the structure and ecology of deep water reef habitats around the coast of South Africa and in most marine areas around the world. Furthermore, the inability to effectively survey deep water benthic environments has limited the capacity of researchers to investigate connectivity between shallow and deep water habitats in a standardised and comparable fashio

    New possibilities for research on reef fish across the continental shelf of South Africa

    Get PDF
    [From introduction] Subtidal research presents numerous challenges that restrict the ability to answer fundamental ecological questions related to reef systems. These challenges are closely associated with traditional monitoring methods and include depth restrictions (e.g. safe diving depths for underwater visual census), habitat destruction (e.g. trawling), mortality of target species (e.g. controlled angling and fish traps), and high operating costs (e.g. remotely operated vehicles and large research vessels. Whereas many of these challenges do not apply or are avoidable in the shallow subtidal environment, the difficulties grow as one attempts to sample deeper benthic habitats. This situation has resulted in a paucity of knowledge on the structure and ecology of deep water reef habitats around the coast of South Africa and in most marine areas around the world. Furthermore, the inability to effectively survey deep water benthic environments has limited the capacity of researchers to investigate connectivity between shallow and deep water habitats in a standardised and comparable fashion

    A multidisciplinary study of a small, temporarily open/closed South African estuary, with particular emphasis on the influence of mouth state on the ecology of the system

    Get PDF
    In 2005/2006 a multidisciplinary research programme that included studies on the hydrodynamics, sediment dynamics, macronutrients, microalgae, macrophytes, zoobenthos, hyperbenthos, zooplankton, ichthyoplankton, fish and birds of the temporarily open/closed East Kleinemonde Estuary was conducted. Particular attention was given to the responses of the different ecosystem components to the opening and closing of the estuary mouth and how this is driven by both riverine and marine events. Using a complementary dataset of daily estuary mouth conditions spanning a 14-year period, five distinct phases of the estuary were identified, including closed (average = 90% of the days), outflow (<1%), tidal (9%) and semi-closed (<1%). The open-mouth phase is critical for the movements of a number of estuary-associated fish (e.g. Rhabdosargus holubi) and invertebrates (e.g. Scylla serrata) between the estuary and sea. The timing of this open phase has a direct influence on the ability of certain estuaryassociated fish (e.g. Lithognathus lithognathus) and invertebrates (e.g. Palaemon peringueyi) to successfully recruit into the system, with a spring opening (October/November) being regarded as optimal for most species. The type of mouth-breaching event and outflow phase is also important in terms of the subsequent salinity regime once the berm barrier forms. A deep mouth breaching following a large river flood tends to result in major tidal inputs of marine water prior to mouth closure and therefore higher salinities (15–25). Conversely, a shallow mouth breaching with reduced tidal exchange during the open phase often leads to a much lower salinity regime at the time of mouth closure (5–15). The biota, especially the submerged macrophytes, respond very differently to the above two scenarios, with Ruppia cirrhosa benefiting from the former and Potamogeton pectinatus from the latter. River flooding and the associated outflow of large volumes of water through the estuary can result in major declines in zooplankton, zoobenthos, hyperbenthos and fish populations during this phase. However, this resetting of the estuary is necessary because certain marine invertebrate and fish species are dependent on the opening of the estuary mouth in order to facilitate recruitment of larvae and post-larvae into the system from the sea. Slight increases in the numbers of certain piscivorous and resident wading bird species were recorded when the estuary mouth opened, possibly linked to increased feeding opportunities during that phase

    Alphaviruses detected in mosquitoes in the North-Eastern regions of South Africa, 2014 to 2018

    Get PDF
    The prevalence and distribution of African alphaviruses such as chikungunya have increased in recent years. Therefore, a better understanding of the local distribution of alphaviruses in vectors across the African continent is important. Here, entomological surveillance was performed from 2014 to 2018 at selected sites in north-eastern parts of South Africa where alphaviruses have been identified during outbreaks in humans and animals in the past. Mosquitoes were collected using a net, CDC-light, and BG-traps. An alphavirus genus-specific nested RT-PCR was used for screening, and positive pools were confirmed by sequencing and phylogenetic analysis. We collected 64,603 mosquitoes from 11 genera, of which 39,035 females were tested. Overall, 1462 mosquito pools were tested, of which 21 were positive for alphaviruses. Sindbis (61.9%, N = 13) and Middelburg (28.6%, N = 6) viruses were the most prevalent. Ndumu virus was detected in two pools (9.5%, N = 2). No chikungunya positive pools were identified. Arboviral activity was concentrated in peri-urban, rural, and conservation areas. A range of Culicidae species, including Culex univittatus, Cx. pipiens s.l., Aedes durbanensis, and the Ae. dentatus group, were identified as potential vectors. These findings confirm the active circulation and distribution of alphaviruses in regions where human or animal infections were identified in South Africa.Environmental Biolog

    Aedes species (Diptera: Culicidae) ecological and host feeding patterns in the north-eastern parts of South Africa, 2014–2018

    Get PDF
    Background There is a paucity of recent data and knowledge on mosquito diversity and potential vectors of arboviruses in South Africa, with most of the available data dating back to the 1950s–1970s. Aedes and Culex species are the major vectors of some of the principal arboviruses which have emerged and re-emerged in the past few decades. Methods In this study we used entomological surveillance in selected areas in the north-eastern parts of South Africa from 2014 to 2018 to assess mosquito diversity, with special emphasis on the Aedes species. The impact of trap types and environmental conditions was also investigated. Identification of the blood meal sources of engorged females collected during the study period was carried out, and DNA barcodes were generated for selected species. Results Overall, 18.5% of the total Culicidae mosquitoes collected belonged to the genus Aedes, with 14 species recognised or suspected vectors of arboviruses. Species belonging to the Neomelaniconion subgenus were commonly collected in the Bushveld savanna at conservation areas, especially Aedes mcintoshi and Aedes circumluteolus. Aedes aegypti was present in all sites, albeit in low numbers. Temperature was a limiting factor for the Aedes population, and they were almost exclusively collected at temperatures between 18 °C and 27 °C. The cytochrome oxidase subunit I (COI) barcode fragment was amplified for 21 Aedes species, and for nine of these species it was the first sequence information uploaded on GenBank. Conclusion This study provides a better understanding of the diversity and relative abundance of Aedes species in the north-east of South Africa. The information provided here will contribute to future arboviral research and implementation of efficient vector control and prevention strategies

    Conservation conundrum – red listing of subtropical-temperate coastal forested wetlands of South Africa

    Get PDF
    Africa’s range-restricted and transitional subtropical-temperate coastal forested wetlands are facing interlinking threats of climate and anthropogenic pressures. We assessed their conservation status using the criteria of the International Union for Conservation of Nature (IUCN). Their total areal extent was hind-casted to the reference epoch 2000, followed by the quantification of subsequent total losses in areal extents for the epochs 2005, 2008, 2011 and 2017. South Africa had 120 km2 of coastal swamp and floodplain forests in 2000 of which the majority (116.5 km2) occurred on the Maputaland Coastal Plain (MCP). By 2011, 20% of the areal extent was lost, and at the lowest rate of decline we estimate that ≄ 80% of the rest will be lost in the next 50 years. An ecosystem collapse assessment therefore indicated that the habitat is very likely Critically Endangered. Fragmentation and types of transformations were used as degradation indices to show functional collapse. These results showed that forest patches became increasingly fragmented, from 511 to 1 145 patches between 2000 and 2017 and that > 23% of the areal extent showed severe transformation. Several faunal species, with a close association to the forested wetlands of the MCP, are considered threatened with numbers declining because of transformation to timber plantations or agriculture and coupled with a prolonged drought. Of these, a sub-species of the Samango monkey, Cercopithecus mitis erythrarchus, considered to be a primary ecosystem engineer of the habitat, was red listed with a restricted distribution, being endemic, Near Threatened and declining. Also under pressure, because of habitat fragmentation and degradation is the Peregrine crab (Varuna litterata), a euryhaline species requiring connectivity across the land-seascape, ranging from freshwater forested wetlands to estuarine and off-shore environments. Functionally, these coastal forested wetlands are therefore also considered Critically Endangered. The final IUCN conservation status of South Africa’s subtropical-temperate coastal forested wetlands are recommended to be very likely Critically Endangered. Irrespective of 62% of the areal extent of these forested wetlands being within protected areas, severe degradation (metrics of fragmentation and transformation) were observed even inside these areas for the past two decades. The conservation conundrum is that despite existing legislation and management measures, there has been no stop or reversal of the negative trends to date. As a supplementary method, we therefore recommend a transdisciplinary community-based approach to conservation practice, continued and improved monitoring of the habitat losses, the identifying priority areas for rehabilitation and addressing data deficiencies in important species associations.CSIR’s Parliamentary Grant Project P1BEO00/P1CCS02, titled “Marine Observational and Predictive System Capabilities (MAROPS)”; as well as the African Union Commission (AUC) Global Monitoring for Environment and Security (GMES) MARCOSOUTH (K8MARCO). The Department of Science and Innovation (DSI) and National Research Foundation (NRF) Chair in Shallow Water Ecosystems (UID 84375) supported time of Prof. Janine Adams.https://www.elsevier.com/locate/ecolindam2022Geography, Geoinformatics and Meteorolog

    Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints

    Full text link

    Salt marsh erosion in a microtidal estuary

    No full text
    Salt marshes protect estuary banks from erosion by acting as buffers between marine and terrestrial environments. Residents living near the Breede River estuary, Western Cape Province, South Africa, raised concerns about ongoing erosion evident at Groenpunt, the main salt marsh. This study aimed to determine how long erosion has been taking place, the rate and possible causes thereof. Aerial images and environmental data were assessed for the years 2002–2020. Erosion was first evident in 2003. By 2020, the marsh edge had been eroded into a series of micro-bays, incised horizontally up to 7 m, with a scarp height of 0.7 m, corresponding to a loss of 1 313 m2 of salt marsh and a bank retreat rate of 0.66 (SE 0.44) m year−1. Over the study period, there was a regular pattern of high-frequency gale-force winds (&gt;8 on the Beaufort scale), with significantly more winds of this magnitude occurring in 2002 than in other years. The wind wave fetch adjacent to the marsh is up to 1 km in the direction of the predominant wind, and it is likely that the cumulative effects of constant wind-generated waves drove the erosion process. Estuary water and tidal levels over the period reflected normal seasonal fluctuation patterns. The bank supporting Groenpunt salt marsh is eroding at a rate that could possibly see it disappear within the next 60 years, reducing biodiversity and ecosystem services in the estuary. In the face of increasing climatic variability predicted in the future, similar salt marsh erosion is likely to become more prevalent
    corecore