299 research outputs found

    Photon Radiation with MadDipole

    Full text link
    We present the automation of a subtraction method for photon radiation using the dipole formalism within the MadGraph framework. The subtraction terms are implemented both in dimensional regularization and mass regularization for massless and massive cases and non-collinear-safe observables are accounted for.Comment: 23 pages, 2 figures, minor additions, references added, version published in JHE

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children

    Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study

    Get PDF
    INTRODUCTION: Body mass index (BMI) during adulthood is inversely related to the incidence of premenopausal breast cancer, but the role of body fatness earlier in life is less clear. We examined prospectively the relation between body fatness during childhood and adolescence and the incidence of breast cancer in premenopausal women. METHODS: Participants were 109,267 premenopausal women in the Nurses' Health Study II who recalled their body fatness at ages 5, 10 and 20 years using a validated 9-level figure drawing. Over 12 years of follow up, 1318 incident cases of breast cancer were identified. Cox proportional hazards regression was used to compute relative risks (RRs) and 95% confidence intervals (CIs) for body fatness at each age and for average childhood (ages 5–10 years) and adolescent (ages 10–20 years) fatness. RESULTS: Body fatness at each age was inversely associated with premenopausal breast cancer incidence; the multivariate RRs were 0.48 (95% CI 0.35–0.55) and 0.57 (95% CI 0.39–0.83) for the most overweight compared with the most lean in childhood and adolescence, respectively (P for trend < 0.0001). The association for childhood body fatness was only slightly attenuated after adjustment for later BMI, with a multivariate RR of 0.52 (95% CI 0.38–0.71) for the most overweight compared with the most lean (P for trend = 0.001). Adjustment for menstrual cycle characteristics had little impact on the association. CONCLUSION: Greater body fatness during childhood and adolescence is associated with reduced incidence of premenopausal breast cancer, independent of adult BMI and menstrual cycle characteristics

    Development and testing of the BONES physical activity survey for young children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight-bearing and high intensity physical activities are particularly beneficial for stimulating bone growth in children given that bone responds favorably to mechanical load. While it is important to assess the contribution and impact of weight-bearing physical activity on health outcomes, measurement tools that quantify and provide information on these activities separately from overall physical activity are limited. This study describes the development and evaluation of a pictorial physical activity survey (PAS) that measures children's participation and knowledge of high-intensity, weight-bearing ("bone smart") physical activity.</p> <p>Methods</p> <p>To test reliability, two identical sets of the PAS were administered on the same day to 41 children (mean age 7.1 ± 0.8 years; 63% female) and compared. To test validity, accelerometry data from 40 children (mean age 7.7 ± 0.8 years; 50% female) were compared to data provided by the PAS. Agreements between categorical and ordinal items were assessed with Kappa statistics; agreements between continuous indices were assessed with Spearman's correlation tests.</p> <p>Results</p> <p>The subjects produced reliable results in all 10 physical activity participation items (κ range: 0.36-0.73, all p < 0.05), but less reliable in answering if the physical activities were "bone smart" (κ range: -0.04-0.66). Physical activity indices, including metabolic equivalent time and weight-bearing factors, were significant in test-retest analyses (Spearman's <it>r </it>range: 0.57-0.74, all p < 0.001). Minutes of very vigorous activity from the accelerometer were associated with the self-reported weight-bearing activity, moderate-high, and high activity scores from the PAS (Spearman's <it>r </it>range: 0.47-0.48, all p < 0.01). However, accelerometer counts, counts per minute, and minutes of moderate-vigorous and vigorous activity were not associated with the PAS scores.</p> <p>Conclusions</p> <p>Together, the results of these studies suggest that the PAS has acceptable test-retest reliability, but limited validity for early elementary school children. This survey demonstrates a first step towards developing a questionnaire that measures high intensity, weight-bearing activity in schoolchildren.</p

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    NF-κB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase

    Get PDF
    Hypoxic EMT-6 tumour cells displayed a high level of inducible nitric oxide synthase (iNOS) and an increased radiosensitivity after a 16 h exposure to lipopolysaccharide, a known activator of nuclear factor-κB (NF-κB). Both iNOS activation and radioresponse were impaired by the NF-κB inhibitors phenylarsine oxide and lactacystin. Contrasting to other studies, our data show that inhibition of NF-κB may impair the radioresponse of tumour cells through downregulation of iNOS. © 2003 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Ultrasound-assessed perirenal fat is related to increased ophthalmic artery resistance index in HIV-1 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The introduction of highly active antiretroviral therapy (HAART) has dramatically changed the prognosis of human immunodeficiency virus (HIV) infection, with a significant decline in morbidity and mortality.</p> <p>Changes in body fat distribution are a common finding in individuals with HIV infection being treated with antiretrovirals, and this condition (collectively termed lipodystrophy syndrome) is associated with depletion of subcutaneous fat, increased triglycerides and insulin resistance. Obesity, particularly visceral obesity, is associated with increased risk of cardiovascular disease. Therefore, estimating visceral fat distribution is important in identifying subjects at high risk for cardiovascular disease.</p> <p>The aim of our study was to evaluate whether perirenal fat thickness (PRFT), a parameter of central obesity, is related to ophthalmic artery resistance index (OARI), an index of occlusive carotid artery disease in HIV-1 infected patients.</p> <p>Methods</p> <p>We enrolled 88 consecutive HIV-1-infected patients receiving highly active antiretroviral therapy for more than 12 months, in a prospective cohort study. Echographically measured PRFT and OARI, as well as serum metabolic parameters, were evaluated. PRFT and OARI were measured by 3.75 MHz convex and 7.5 MHz linear probe, respectively.</p> <p>Results</p> <p>The means of PRFT and OARI in HIV-1-infected patients with visceral obesity was considerably higher than in patients without it (p < 0.0001 and p < 0.001, respectively). Using the average OARI as the dependent variable, total serum cholesterol level, HDL, triglycerides, glycemia, sex, blood pressure, age and PRFT were independent factors associated with OARI. A PRFT of 6.1 mm was the most discriminatory value for predicting an OARI > 0.74 (sensitivity 78.9%, specificity 82.8%).</p> <p>Conclusions</p> <p>Our data indicate that ultrasound assessment of PRFT may have potential as a marker of increased endothelial damage with specific involvement of the ocular vascular region in HIV-1-infected patients.</p

    Sonographic assessment of abdominal fat distribution in infancy

    Get PDF
    There is growing evidence that not only the total amount of fat, but also the distribution of body fat determines risks for metabolic and cardiovascular disease. Developmental studies on factors influencing body fat distribution have been hampered by a lack of appropriate techniques for measuring intraabdominal fat in early life. Sonography, which is an established method for assessing abdominal fat distribution in adults, has not yet been evaluated in infants. To adapt the sonographic measurement of abdominal fat distribution to infants and study its reliability. The Generation R study, a population-based prospective cohort study. We included 212 one- and 227 two-year old Dutch infants in the present analysis. Sixty-two infants underwent replicate measurements to assess reproducibility. We developed a standardized protocol to measure the thickness of (1) subcutaneous and (2) preperitoneal fat in the upper abdomen of infants. To this end we defined infancy specific measurement areas to quantify fat thickness. Reproducibility of fat measurements was good to excellent with intraclass correlation coefficients of 0.93–0.97 for intra-observer agreement and of 0.89–0.95 for inter-observer agreement. We observed a pronounced increase in preperitoneal fat thickness in the second year of life while subcutaneous fat thickness increased only slightly, resulting in an altered body fat distribution. Gender did not significantly influence fat distribution in the first two years of life. Our age specific protocol for the sonographic measurement of central subcutaneous and preperitoneal fat is a reproducible method that can be instrumental for investigating fat distribution in early life

    NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging

    Get PDF
    We present next-to-leading order (NLO) predictions including QCD and electroweak (EW) corrections for the production and decay of off-shell electroweak vector bosons in association with up to two jets at the 13 TeV LHC. All possible dilepton final states with zero, one or two charged leptons that can arise from off-shell W and Z bosons or photons are considered. All predictions are obtained using the automated implementation of NLO QCD+EW corrections in the OpenLoops matrix-element generator combined with the Munich and Sherpa Monte Carlo frameworks. Electroweak corrections play an especially important role in the context of BSM searches, due to the presence of large EW Sudakov logarithms at the TeV scale. In this kinematic regime, important observables such as the jet transverse momentum or the total transverse energy are strongly sensitive to multijet emissions. As a result, fixed-order NLO QCD+EW predictions are plagued by huge QCD corrections and poor theoretical precision. To remedy this problem we present an approximate method that allows for a simple and reliable implementation of NLO EW corrections in the MePs@Nlo multijet merging framework. Using this general approach we present an inclusive simulation of vector-boson production in association with jets that guarantees NLO QCD+EW accuracy in all phase-space regions involving up to two resolved jets
    corecore