729 research outputs found

    Hierarchical Coupling of Molecular Dynamics and Micromechanics to Predict the Elastic Properties of Three-Phase and Four-Phase Silicon Carbide Composites

    Get PDF
    The results obtained from previously conducted molecular dynamics analysis of silicon carbide (-SiC (6H, 4H, & 2H-SiC), -SiC (3C SiC)), silicon and boron nitride, were utilized as inputs in the MAC/GMC micromechanics software to model and evaluate the elastic properties of three-phase SiC/BN/SiC and four-phase SiC/BN/Si/SiC composites. This method of analysis eliminates the need for back-calculation of the apparent properties of the base constituents from the measured ceramic matrix composites properties. The multiscale models are validated against the available data in literature

    Coupled Thermo-Mechanical Micromechanics Modeling of the Influence of Thermally Grown Oxide Layer in an Environmental Barrier Coating System

    Get PDF
    Environmental Barrier Coatings (EBCs) have emerged as a promising means of protecting silicon based ceramic matrix composite (CMC) components for high temperature applications (e.g., aircraft engines). EBCs are often used to protect an underlying material (substrate) such as silicon carbide from extreme thermal/chemical environments. In a typical CMC/EBC system, an EBC may or may not be adhered to an underlying substrate with a bond coat (e.g., silicon). Irrespective, systems that utilize EBCs are susceptible to a number of failure modes including oxidation/delamination, recession, chemical attack and dissolution, thermomechanical degradation, erosion, and foreign object damage. Current work at NASA Glenn Research Center is aimed at addressing these failure modes in EBC systems and developing robust analysis tools to aid in the design process. The Higher-Order Theory for Functionally Graded Materials (HOTFGM), a precursor to the High-Fidelity Generalized Method of Cells micromechanics approach, was developed to investigate the coupled thermo-mechanical behavior of functionally graded composites and will be used herein to assess the development and growth of a low-stiffness thermally grown oxide (TGO) layer in EBC/CMC systems without a silicon bond coat. To accomplish this a sensitivity study is conducted to examine the influence of uniformly and nonuniformly grown oxide layer on the associated driving forces leading to mechanical failure (spallation) of EBC layer when subjected to isothermal loading

    Influence of Thermally-Grown Oxide (TGO) Layer on the Driving Forces Associated with Failure in Environmental Barrier Coating (EBC) Systems

    Get PDF
    Environmental barrier coatings (EBC) is an enabling technology for the successful application of ceramic matrix composites (CMCs) in air-breathing gas turbine engines. Spallation of environmental barrier coating (EBC) induced by thermally grown oxide (TGO) layer is a key EBC failure mode. The TGO layer, resulting from steam oxidation, grows either from a silicon bond coat layer (if present) or from the silicon carbide (SiC) based substrate itself. Critical thickness of the TGO layer for failure is in the range of 20-30 microns but it can vary due to exposure temperature, microstructure etc. Current work at NASA Glenn Research Center, under the Revolutionary Tools and Methods (RTM) project is aimed at addressing associated failure modes in EBC systems and developing robust analysis tools to aid in the design/analysis of these systems. The objective of the current work is to conduct a sensitivity study to examine the influence of uniformly and non-uniformly grown oxide layers with or without damage on the associated driving forces leading to spallation of the EBC when subjected to isothermal loading. Initial results indicate that the presence of damage (vertical cracks caused by in-plane stresses) enhances the stresses that are present due to non-uniformity. However, the presence of non-uniformity itself is still the main factor influencing the magnitude of peel and shear stresses in the TGO layer

    Computationally-efficient Structural Models for Analysis of Woven Composites

    Get PDF
    The paper presents a novel approach to model woven composite using the computationally efficient one-dimensional models. The framework is built within the scheme of the Carrera Unified Formulation (CUF), a generalized hierarchical formulation that generates variable kinematic structural theories. Various components of the woven composite unit cell are modeled using a combination of straight and curved one-dimensional CUF models. By employing a component-wise approach, a modeling technique within CUF, the complex geometry of the woven composite components is modeled precisely. The ability of CUF models to accurately resolve stress and strain fields are exploited to capture complex deformation within a woven composite unit cell. Numerical results include analyses of a non-crimped textile composite, a curved tow under tension, and a dry woven textile unit cell

    A Comparison of Different Modeling Strategies for Predicting Effective Properties of 3D Woven Composites

    Get PDF
    Three-dimensional (3D) woven composites are an attractive means of achieving superior mechanical performance in aerospace structures. Limited analysis capability currently exists to predict both effective elastic and strength properties for these complex composites. In this study, a comparison of three modeling strategies was performed to assess the ability of the different methods to predict the effective elastic properties of four distinct 3D orthogonal woven composites. Two finite element techniques (in-plane and triply-periodic boundary conditions) and one method of cells technique, the Multiscale Generalized Method of Cells, were considered

    An S2 Fluorescence Model for Interpreting High-Resolution Cometary Spectra. I. Model Description and Initial Results

    Full text link
    A new versatile model providing S2 fluorescence spectrum as a function of time is developed with the aim of interpreting high resolution cometary spectra. For the S2 molecule, it is important to take into account both chemical and dynamic processes because S2 has a short lifetime and is confined in the inner coma where these processes are most important. The combination of the fluorescence model with a global coma model allows for the comparison with observations of column densities taken through an aperture and for the analysis of S2 fluorescence in different parts of the coma. Moreover, the model includes the rotational structure of the molecule. Such a model is needed for interpreting recent high spectral resolution observations of cometary S2. A systematic study of the vibrational-rotational spectrum of S2 is undertaken, including relevant effects, such as non-equilibrium state superposition and the number density profile within the coma due to dynamics and chemistry, to investigate the importance of the above effects on the scale length and abundance of S2 in comets.Comment: 20 pages, 7 figure

    Order-Reduced Solution of the Nonlinear High-Fidelity Generalized Method of Cells Micromechanics Relations

    Get PDF
    The High-Fidelity Generalized Method of Cells (HFGMC) is one technique for accurately simulating nonlinear composite material behavior. The HFGMC uses a higher-order approximation for the subcell displacement field that allows for a more accurate determination of the subcell stressstrain fields at the cost of some computational efficiency. In order to reduce computational costs associated with the solution of the ensuing system of simultaneous equations, the HFGMC global system of equations for doubly-periodic repeating unit cells with nonlinear constituents was reduced in size through the use of a Petrov-Galerkin-based Proper Orthogonal Decomposition order-reduction scheme. A number of cases were presented that address the computational feasibility of using order-reduction techniques to solve solid mechanics problems involving complex microstructures

    Coupled Thermomechanical Micromechanics Modeling of the Influence of Thermally Grown Oxide Layer in an Environmental Barrier Coating System

    Get PDF
    Environmental Barrier Coatings (EBCs) have emerged as a promising means of protecting critical components for high temperature applications (e.g., aircraft engines). EBCs are often used to protect an underlying material (substrate) from extreme thermal/chemical environments. However, systems that utilize EBCs are susceptible to a number of failure modes including oxidation/delamination. Environmental Barrier Coatings (EBCs) have emerged as a promising means of protecting silicon based ceramic matrix composite (CMC) components for high temperature applications (e.g., aircraft engines). EBCs are often used to protect an underlying material (substrate) such as silicon carbide from extreme thermal/chemical environments. In a typical CMC/EBC system, an EBC may or may not be adhered to an underlying substrate with a bond coat (e.g., silicon). Irrespective, systems that utilize EBCs are susceptible to a number of failure modes including oxidation/delamination, recession, chemical attack and dissolution, thermo-mechanical degradation, erosion, and foreign object damage. Current work at NASA Glenn Research Center is aimed at addressing these failure modes in EBC systems and developing robust analysis tools to aid in the design process. The Higher-Order Theory for Functionally Graded Materials (HOTFGM), a precursor to the High-Fidelity Generalized Method of Cells micromechanics approach, was developed to investigate the coupled thermo-mechanical behavior of functionally graded composites and will be used herein to assess the development and growth of a low-stiffness thermally grown oxide (TGO) layer in EBC/CMC systems without a silicon bond coat. To accomplish this a sensitivity study is conducted to examine the influence of uniformly and non-uniformly grown oxide layer on the associated driving forces leading to mechanical failure (spallation) of EBC layer when subjected to isothermal loading, recession, chemical attack and dissolution, thermomechanical degradation, erosion, and foreign object damage. Current work at NASA Glenn Research Center is aimed at addressing these failure modes in EBC systems and developing robust analysis tools to aid in the design process. The Higher-Order Theory for Functionally Graded Materials (HOTFGM), a precursor to the High-Fidelity Generalized Method of Cells micromechanics approach, was developed to investigate the coupled thermo-mechanical behavior of functionally graded composites (Aboudi et al., 1999, Composites B). For example, HOTFGM was previously used (Arnold et al, 1995, NASA CP 10178, paper 34), to assess interlaminar stresses (including free edge effects) in a substrate with a thermal barrier coating (TBC). In this study, HOTFGM micromechanics analyses will be used to assess the development and growth of a low-stiffness thermally grown oxide (TGO) layer between a silicon carbide substrate and a ytterbium disilicate EBC. In order to realistically simulate TGO growth, an evolution law will be incorporated into HOTFGM. In addition, the effect of TGO roughness will be explored consistent with previous TBC work (Pindera et al., 2000. Material Science and Engineering, A284, pp. 158-175). This model represents a first step in developing a robust analysis tool that can ultimately be used to design durable EBC systems. Additional failure modes will be considered as part of a future work

    MYC amplification in subtypes of breast cancers in African American women

    Get PDF
    BACKGROUND: MYC overexpression is associated with poor prognosis in breast tumors (BCa). The objective of this study was to determine the prevalence of MYC amplification and associated markers in BCa tumors from African American (AA) women and determine the associations between MYC amplification and clinico-pathological characteristics. METHODS: We analyzed 70 cases of well characterized archival breast ductal carcinoma specimens from AA women for MYC oncogene amplification. Utilizing immune histochemical analysis estrogen receptor (ER), progesterone receptor (PR), and (HER2/neu), were assessed. Cases were Luminal A (ER or PR+, Ki-67 \u3c 14%), Luminal B (ER or PR+, Ki-67 = \u3e 14% or ER or PR+ HER2+), HER2 (ER-, PR-, HER2+), and Triple Negative (ER-, PR-, HER2-) with basal-like phenotype. The relationship between MYC amplification and prognostic clinico-pathological characteristics was determined using chi square and logistic regression modeling. RESULTS: Sixty-five (97%) of the tumors showed MYC gene amplification (MYC: CEP8 \u3e 1). Statistically significant associations were found between MYC amplification and HER2-amplified BCa, and Luminal B subtypes of BCa (p \u3c 0.0001), stage (p \u3c 0.001), metastasis (p \u3c 0.001), and positive lymph node status (p = 0.039). MYC amplification was associated with HER2 status (p = 0.01) and tumor size (p = 0.01). High MYC amplification was seen in grade III carcinomas (MYC: CEP8 = 2.42), pre-menopausal women (MYC: CEP8 = 2.49), PR-negative status (MYC: CEP8 = 2.42), and ER-positive status (MYC: CEP8 = 2.4). CONCLUSIONS: HER2 positive BCas in AA women are likely to exhibit MYC amplification. High amplification ratios suggest that MYC drives HER2 amplification, especially in HER2 positive, Luminal B, and subtypes of BCa
    • …
    corecore