18,914 research outputs found

    A Poincar\'e section for the general heavy rigid body

    Full text link
    A general recipe is developed for the study of rigid body dynamics in terms of Poincar\'e surfaces of section. A section condition is chosen which captures every trajectory on a given energy surface. The possible topological types of the corresponding surfaces of section are determined, and their 1:1 projection to a conveniently defined torus is proposed for graphical rendering.Comment: 25 pages, 10 figure

    Green's function theory of quasi-two-dimensional spin-half Heisenberg ferromagnets: stacked square versus stacked kagom\'e lattice

    Full text link
    We consider the thermodynamic properties of the quasi-two-dimensional spin-half Heisenberg ferromagnet on the stacked square and the stacked kagom\'e lattices by using the spin-rotation-invariant Green's function method. We calculate the critical temperature TCT_C, the uniform static susceptibility χ\chi, the correlation lengths ξν\xi_\nu and the magnetization MM and investigate the short-range order above TCT_C. We find that TCT_C and MM at T>0T>0 are smaller for the stacked kagom\'e lattice which we attribute to frustration effects becoming relevant at finite temperatures.Comment: shortened version as published in PR

    Frustrated spin ladder with alternating spin-1 and spin-1/2 rungs

    Full text link
    We study the impact of the diagonal frustrating couplings on the quantum phase diagram of a two-leg ladder composed of alternating spin-1 and spin-1/2 rungs. As the coupling strength is increased the system successively exhibits two gapped paramagnetic phases (a rung-singlet and a Haldane-like non-degenerate states) and two ferrimagnetic phases with different ferromagnetic moments per rung. The first two states are similar to the phases studied in the frustrated spin-1/2 ladder, whereas the magnetic phases appear as a result of the mixed-spin structure of the model. A detailed characterization of these phases is presented using density-matrix renormalization-group calculations, exact diagonalizations of periodic clusters, and an effective Hamiltonian approach inspired by the analysis of numerical data. The present theoretical study was motivated by the recent synthesis of the quasi-one-dimensional ferrimagnetic material FeII^{II}FeIII^{III} (trans-1,4-cyclohexanedicarboxylate) exhibiting a similar ladder structure.Comment: 10 pages, 8 figure

    Large Negative Electronic Compressibility of LaAlO3-SrTiO3 Interfaces with Ultrathin LaAlO3 Layers

    Full text link
    A two-dimensional electron liquid is formed at the n-type interface between SrTiO3 and LaAlO3. Here we report on Kelvin probe microscopy measurements of the electronic compressibility of this electron system. The electronic compressibility is found to be negative for carrier densities of \approx10^13/cm^2. At even smaller densities, a metal-to-insulator transition occurs. These local measurements corroborate earlier measurements of the electronic compressibility of LaAlO3-SrTiO3 interfaces obtained by measuring the capacitance of macroscopic metal-LaAlO3-SrTiO3 capacitors

    Ehrenfest-time dependence of counting statistics for chaotic ballistic systems

    Get PDF
    Transport properties of open chaotic ballistic systems and their statistics can be expressed in terms of the scattering matrix connecting incoming and outgoing wavefunctions. Here we calculate the dependence of correlation functions of arbitrarily many pairs of scattering matrices at different energies on the Ehrenfest time using trajectory based semiclassical methods. This enables us to verify the prediction from effective random matrix theory that one part of the correlation function obtains an exponential damping depending on the Ehrenfest time, while also allowing us to obtain the additional contribution which arises from bands of always correlated trajectories. The resulting Ehrenfest-time dependence, responsible e.g. for secondary gaps in the density of states of Andreev billiards, can also be seen to have strong effects on other transport quantities like the distribution of delay times.Comment: Refereed version. 15 pages, 14 figure

    Properties of the first excited state of 9Be derived from (gamma,n) and (e,e') reactions

    Full text link
    Properties of the first excited state of the nucleus 9Be are discussed based on recent (e,e') and (gamma,n) experiments. The parameters of an R-matrix analysis of different data sets are consistent with a resonance rather than a virtual state predicted by some model calculations. The energy and the width of the resonance are deduced. Their values are rather similar for all data sets, and the energy proves to be negative. It is argued that the disagreement between the extracted B(E1) values may stem from different ways of integration of the resonance. If corrected, fair agreement between the (e,e') and one of the (gamma,n) data sets is found. A recent (gamma,n) experiment at the HIgS facility exhibits larger cross sections close to the neutron threshold which remain to be explained.Comment: 5 pages, accepted fro publication in Phys. Rev.

    Excitation of the electric pygmy dipole resonance by inelastic electron scattering

    Full text link
    To complete earlier studies of the properties of the electric pygmy dipole resonance (PDR) obtained in various nuclear reactions, the excitation of the 1−^- states in 140^{140}Ce by (e,e′)(e,e') scattering for momentum transfers q=0.1−1.2q=0.1-1.2~fm−1^{-1} is calculated within the plane-wave and distorted-wave Born approximations. The excited states of the nucleus are described within the Quasiparticle Random Phase Approximation (QRPA), but also within the Quasiparticle-Phonon Model (QPM) by accounting for the coupling to complex configurations. It is demonstrated that the excitation mechanism of the PDR states in (e,e′)(e,e') reactions is predominantly of transversal nature for scattering angles θe≈90o−180o\theta_e \approx 90^o-180^o. Being thus mediated by the convection and spin nuclear currents, the (e,e′)(e,e') like the (γ,γ′)(\gamma,\gamma') reaction, may provide additional information to the one obtained from Coulomb- and hadronic excitations of the PDR in (p,p′)(p,p'), (α,α′)(\alpha,\alpha'), and heavy-ion scattering reactions. The calculations predict that the (e,e′)(e,e') cross sections for the strongest individual PDR states are in general about three orders of magnitude smaller as compared to the one of the lowest 21+2^+_1 state for the studied kinematics, but that they may become dominant at extreme backward angles.Comment: Prepared for the special issue of EPJA on the topic "Giant, Pygmy, Pairing Resonances and related topics" dedicated to the memory of Pier Francesco Bortigno

    Concentration of Vacancies at Metal Oxide Surfaces: Case Study of MgO (100)

    Full text link
    We investigate effects of doping on formation energy and concentration of oxygen vacancies at a metal oxide surface, using MgO (100) as an example. Our approach employs density-functional theory, where the performance of the exchange-correlation functional is carefully analyzed, and the functional is chosen according to a fundamental condition on DFT ionization energies. The approach is further validated by CCSD(T) calculations for embedded clusters. We demonstrate that the concentration of oxygen vacancies at a doped oxide surface is largely determined by formation of a macroscopically extended space charge region
    • …
    corecore