23,812 research outputs found

    Comment on "Density of States and Critical Behavior of the Coulomb Glass"

    Full text link
    In a recent numerical investigation of the Coulomb glass, Surer et al. [Phys. Rev. Lett. 102, 067205 (2009)] concluded that their simulation results are consistent with the Efros Shklovskii prediction for the density of states in the three-dimensional case. Here, we show that this statement has no relevance concerning the problem of the asymptotic behavior in the Coulomb gap since it is based on unjustified assumptions. Moreover, for the random-displacement Coulomb glass model, we demonstrate that a part of the density of states data by Surer et al. erroneously exhibit a broad gap. This is related to the staggered occupation being instable contrary to their findings.Comment: Submitted to Physical Review Letters, 1 page, 1 figur

    VELOX – A Demonstration Facilility for Lunar Oxygen Extraction in a Laboratory Environment

    Get PDF
    The ultimate goal of a permanent human presence on the Moon is discussed intensively within the global lunar community. Obviously, such an effort poses stringent demands not only on the technology but also on logistics, especially considering the important aspects of masses and volume for materials and replenishments of consumables. On-site propellant production (i.e. liquid oxygen) is one of the main needs and would lead to more efficient return-to-Earth or further exploration missions. Additionally, the supply of breathable air and water for the survival of the crew on the lunar surface is also a major aspect. Thus, large effort is put into the development and research of technologies for in-situ resources utilization (ISRU) to drastically reduce the required supply from Earth and to increase the level of autonomy of a lunar outpost. The major resource on the Moon for such a purpose is regolith, which covers the first meters of the lunar surface and contains about 45% of mineralogically bounded Oxygen in terms of mass. By using adequate processing methods of this material, one could be able to extract valuable minerals and volatiles for further utilization. At DLR Bremen a compact and flexible lab experimenting facility has been developed, built and tested, which shall demonstrate the feasibility of the process by extracting oxygen out of lunar regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, important boundary conditions have been investigated such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility, which shall be analyzed within this paper. Since it is one of the most elaborated chemical processes regarding ISRU and has comparably low temperature and energy constraints it has been primarily concentrated on the Hydrogen-reduction process which reduces the iron oxide component of Ilmenite (FeTiO3) within the lunar regolith. Based on the obtained results, a first line-out of a planned superior test set-up and infrastructure with pre- and post-processing units such as feeding and extraction is also presented, as well as an analysis of reaction products with common methods. This paper will present the first results of DLR efforts regarding these topics. Finally, important aspects of the future development of the processes and technologies are discussed with special consideration of lunar applicability and with respect to environmental conditions as well as mass and energy constraints

    Convenient Labelling Technique for Mass Spectrometry - Acid Catalyzed Deuterium and Oxygen-18 Exchange via Gas-liquid Chromatography

    Get PDF
    Mass spectrometry labelling technique - acid catalyzed deuterium and oxygen 18 exchange by gas-liquid chromatograph

    Ehrenfest-time dependence of counting statistics for chaotic ballistic systems

    Get PDF
    Transport properties of open chaotic ballistic systems and their statistics can be expressed in terms of the scattering matrix connecting incoming and outgoing wavefunctions. Here we calculate the dependence of correlation functions of arbitrarily many pairs of scattering matrices at different energies on the Ehrenfest time using trajectory based semiclassical methods. This enables us to verify the prediction from effective random matrix theory that one part of the correlation function obtains an exponential damping depending on the Ehrenfest time, while also allowing us to obtain the additional contribution which arises from bands of always correlated trajectories. The resulting Ehrenfest-time dependence, responsible e.g. for secondary gaps in the density of states of Andreev billiards, can also be seen to have strong effects on other transport quantities like the distribution of delay times.Comment: Refereed version. 15 pages, 14 figure

    Thermodynamics of the one-dimensional frustrated Heisenberg ferromagnet with arbitrary spin

    Full text link
    The thermodynamic quantities (spin-spin correlation functions <{\bf S}_0{\bf S}_n>, correlation length {\xi}, spin susceptibility {\chi}, and specific heat C_V) of the frustrated one-dimensional J1-J2 Heisenberg ferromagnet with arbitrary spin quantum number S below the quantum critical point, i.e. for J2< |J1|/4, are calculated using a rotation-invariant Green-function formalism and full diagonalization as well as a finite-temperature Lanczos technique for finite chains of up to N=18 sites. The low-temperature behavior of the susceptibility {\chi} and the correlation length {\xi} is well described by \chi = (2/3)S^4 (|J1|-4J2) T^{-2} + A S^{5/2} (|J1|-4J2)^{1/2} T^{-3/2} and \xi = S^2 (|J1|-4J2) T^{-1} + B S^{1/2} (|J1|-4J2)^{1/2} T^{-1/2} with A \approx 1.1 ... 1.2 and B \approx 0.84 ... 0.89. The vanishing of the factors in front of the temperature at J2=|J1|/4 indicates a change of the critical behavior of {\chi} and {\xi} at T \to 0. The specific heat may exhibit an additional frustration-induced low-temperature maximum when approaching the quantum critical point. This maximum appears for S=1/2 and S=1, but was not found for S>1.Comment: 8 pages, 7 figure

    A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data

    Get PDF
    Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made
    • …
    corecore