30,236 research outputs found

    Enhanced low-temperature entropy and flat-band ferromagnetism in the t-J model on the sawtooth lattice

    Full text link
    Using the example of the sawtooth chain, we argue that the t-J model shares important features with the Hubbard model on highly frustrated lattices. The lowest single-fermion band is completely flat (for a specific choice of the hopping parameters ti,jt_{i,j} in the case of the sawtooth chain), giving rise to single-particle excitations which can be localized in real space. These localized excitations do not interact for sufficient spatial separations such that exact many-electron states can also be constructed. Furthermore, all these excitations acquire zero energy for a suitable choice of the chemical potential μ\mu. This leads to: (i) a jump in the particle density at zero temperature, (ii) a finite zero-temperature entropy, (iii) a ferromagnetic ground state with a charge gap when the flat band is fully occupied and (iv) unusually large temperature variations when μ\mu is varied adiabatically at finite temperature.Comment: 2 pages including 2 figures, uses elsart style files; (proceedings of ICM 2006

    Dynamics of many-particle fragmentation in a Cellular Automaton model

    Full text link
    A 3D Cellular Automaton model developed by the authors to deal with the dynamics of N-body interactions has been adapted to investigate the head-on collision of two identical bound clusters of particles, and the ensuing process of fragmentation. The range of impact energies is chosen low enough, to secure that a compound bound cluster can be formed. The model is devised to simulate the laboratory set-up of fragmentation experiments as monitored by 4pi detectors. The particles interact via a Lennard-Jones potential. At low impact energies the numerical experiments following the dynamics of the individual particles indicate a phase of energy sharing among all the particles of the compound cluster. Fragments of all sizes are then found to evaporate from the latter cluster. The cluster sizes, measured in our set-up by simulated 4pi detectors, conform to a power law of exponent around 2.6.Comment: 27 pages, 10 figures, submitted to Phys. Rev.

    Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes

    Full text link
    The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. We investigate two ROSAT All-Sky Survey fields of size 10 * 10 degrees each, one at galactic latitude b = 83 deg (Com), the other at b = -5 deg (Sge), in order to optically identify the majority of sources. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All-Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In particular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula. X-ray emission is, expectedly, tightly correlated with optical variability, and thus our new method for optically identifying X-ray sources is demonstrated to be feasible.Comment: 92 pages, 521 figures, A&A (accepted

    Bipedal steps in the development of rhythmic behavior in humans

    No full text
    We contrast two related hypotheses of the evolution of dance: H1: Maternal bipedal walking influenced the fetal experience of sound and associated movement patterns; H2: The human transition to bipedal gait produced more isochronous/predictable locomotion sound resulting in early music-like behavior associated with the acoustic advantages conferred by moving bipedally in pace. The cadence of walking is around 120 beats per minute, similar to the tempo of dance and music. Human walking displays long-term constancies. Dyads often subconsciously synchronize steps. The major amplitude component of the step is a distinctly produced beat. Human locomotion influences, and interacts with, emotions, and passive listening to music activates brain motor areas. Across dance-genres the footwork is most often performed in time to the musical beat. Brain development is largely shaped by early sensory experience, with hearing developed from week 18 of gestation. Newborns reacts to sounds, melodies, and rhythmic poems to which they have been exposed in utero. If the sound and vibrations produced by footfalls of a walking mother are transmitted to the fetus in coordination with the cadence of the motion, a connection between isochronous sound and rhythmical movement may be developed. Rhythmical sounds of the human mother locomotion differ substantially from that of nonhuman primates, while the maternal heartbeat heard is likely to have a similar isochronous character across primates, suggesting a relatively more influential role of footfall in the development of rhythmic/musical abilities in humans. Associations of gait, music, and dance are numerous. The apparent absence of musical and rhythmic abilities in nonhuman primates, which display little bipedal locomotion, corroborates that bipedal gait may be linked to the development of rhythmic abilities in humans. Bipedal stimuli in utero may primarily boost the ontogenetic development. The acoustical advantage hypothesis proposes a mechanism in the phylogenetic development

    Analytic approach to nuclear rotational states: The role of spin - A minimal model -

    Full text link
    We use a simple field theory model to investigate the role of the nucleon spin for the magnetic sum rules associated with the low-lying collective scissors mode in deformed nuclei. Various constraints from rotational symmetry are elucidated and discussed. We put special emphasis on the coupling of the spin part of the M1 operator to the low lying collective modes, and investigate how this coupling changes the sum rules.Comment: 15 pages, 4 figure

    High-Order Coupled Cluster Calculations Via Parallel Processing: An Illustration For CaV4_4O9_9

    Full text link
    The coupled cluster method (CCM) is a method of quantum many-body theory that may provide accurate results for the ground-state properties of lattice quantum spin systems even in the presence of strong frustration and for lattices of arbitrary spatial dimensionality. Here we present a significant extension of the method by introducing a new approach that allows an efficient parallelization of computer codes that carry out ``high-order'' CCM calculations. We find that we are able to extend such CCM calculations by an order of magnitude higher than ever before utilized in a high-order CCM calculation for an antiferromagnet. Furthermore, we use only a relatively modest number of processors, namely, eight. Such very high-order CCM calculations are possible {\it only} by using such a parallelized approach. An illustration of the new approach is presented for the ground-state properties of a highly frustrated two-dimensional magnetic material, CaV4_4O9_9. Our best results for the ground-state energy and sublattice magnetization for the pure nearest-neighbor model are given by Eg/N=−0.5534E_g/N=-0.5534 and M=0.19M=0.19, respectively, and we predict that there is no N\'eel ordering in the region 0.2≤J2/J1≤0.70.2 \le J_2/J_1 \le 0.7. These results are shown to be in excellent agreement with the best results of other approximate methods.Comment: 4 page

    Magnetic model for Ba_2Cu_3O_4Cl_2

    Full text link
    Ba_2Cu_3O_4Cl_2 consists of two types of copper atoms, Cu(A) and Cu(B). We study the corresponding Heisenberg model with three antiferromagnetic couplings, J_AA, J_BB and J_AB. We find interesting frustration effects due to the coupling J_AB.Comment: 6 pages, LaTeX, 3 eps figures, to appear in JMM
    • …
    corecore