55 research outputs found

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Spectroscopic target selection for the Sloan Digital Sky Survey: The luminous red galaxy sample

    Get PDF
    We describe the target selection and resulting properties of a spectroscopic sample of luminous red galaxies (LRGs) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous intrinsically red galaxies that extends fainter and farther than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous red galaxies are included to a redshift of ∼0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M*g ≈ - 21.4) red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume limited out to z = 0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1 h-3 Gpc3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z = 0.5

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Integration of social and cultural aspects in designing ecohydrology and restoration solutions

    No full text
    Coastal marine ecosystems worldwide are being degraded as a result of anthropogenic disturbance, including pollution, runoff, and sedimentation, which are directly tied to human activities within adjacent watersheds. While the biophysical sciences can provide critical data determining cause-and-effect relationships among human activities and resource degradation, the social sciences are essential for applying these data to developing and implementing sound policies and strategies. As most biological resources cannot truly be managed, the pragmatic approach is to manage those human activities responsible for coastal-resource degradation. Such approaches require the integration of social and cultural elements into designing ecohydrology and restoration solutions

    Eddies around Guam, an island in the Mariana Islands group

    No full text
    Near-surface currents around Guam, a 35 km long, slab-shaped island in the Mariana Islands group, were estimated from current meters, satellite-derived surface topography, and a numerical model. A dominant northwestward-flowing North Equatorial Current prevailed from June to December 2000, with speeds typically 0.1–0.2 m s−1, generating unsteady eddies in the lee of Guam. A number of transient eddies off the tips of the island were apparent, the smallest eddies were at the scale of local topographic features such as headlands and embayments, while other eddies were island size. In addition to eddies off the tips of the island, a large (200 km in diameter) cyclonic oceanic eddy was advected eastward past Guam during the last 2 weeks of August 2000. Centered on Guam for a few days, this eddy formed elsewhere and impinged on the island generating anticlockwise currents around the island of up to 0.5 m s−1. It is suggested that these eddies are sufficiently energetic to return fish and coral eggs and larvae to their natal reefs in Guam, thereby enabling self-seeding of coral reefs in Guam. The numerical model also predicts that large (up to 30 m amplitude) island-generated internal waves may occur around Guam; however, no observations are presently available to support this prediction
    corecore