2,283 research outputs found

    MULTIPLE SPATIAL SCALE ANALYSIS OF WHOOPING CRANE HABITAT IN NEBRASKA

    Get PDF
    Geographic Information System (GIS) and remote sensing technologies were used to evaluate whooping crane stopover habitat in Nebraska. The goal of the research was to investigate habitat selection at multiple spatial scales. The GIS database consisted of all confirmed whooping crane sightings reported in Nebraska from 1975-1996 and land cover information delineated from color infrared aerial photographs and Landsat Thematic Mapper data. Results suggest that whooping cranes select roost habitat by recognizing site-level and landscape-scale land cover composition. Wetland is the most strongly selected habitat type at all spatial scales examined. This presentation emphasizes methods used to analyze habitat selection and how the information can be applied in conservation

    Following microscopic motion in a two dimensional glass-forming binary fluid

    Full text link
    The dynamics of a binary mixture of large and small discs are studied at temperatures approaching the glass transition using an analysis based on the topology of the Voronoi polygon surrounding each atom. At higher temperatures we find that dynamics is dominated by fluid-like motion that involves particles entering and exiting the nearest-neighbour shells of nearby particles. As the temperature is lowered, the rate of topological moves decreases and motion becomes localised to regions of mixed pentagons and heptagons. In addition we find that in the low temperature state particles may translate significant distances without undergoing changes in their nearest neig hbour shell. These results have implications for dynamical heterogeneities in glass forming liquids.Comment: 12 pages, 7 figure

    Dynamic facilitation explains democratic particle motion of metabasin transitions

    Full text link
    Transitions between metabasins in supercooled liquids seem to occur through rapid "democratic" collective particle rearrangements. Here we show that this apparent homogeneous particle motion is a direct consequence of dynamic facilitation. We do so by studying metabasin transitions in facilitated spin models and constrained lattice gases. We find that metabasin transitions occur through a sequence of locally facilitated events taking place over a relatively short time frame. When observed on small enough spatial windows these events appear sudden and homogeneous. Our results indicate that metabasin transitions are essentially "non-democratic" in origin and yet another manifestation of dynamical heterogeneity in glass formers.Comment: 6 pages, 6 figure

    Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation

    Full text link
    We study aging dynamics in two non-disordered spin models with multi-spin interactions, following a sudden quench to low temperature. The models are relevant to the physics of supercooled liquids. Their low temperature dynamics resemble those of kinetically constrained models, and obey dynamical scaling, controlled by zero-temperature critical points. Dynamics in both models are thermally activated, resulting in multi-stage relaxation towards equilibrium. We study several two-time correlation and response functions. We find that equilibrium fluctuation-dissipation relations are generically not satisfied during the aging regime, but deviations from them are well described by fluctuation-dissipation ratios, as found numerically in supercooled liquids. These ratios are purely dynamic objects, containing information about the nature of relaxation in the models. They are non-universal, and can even be negative as a result of activated dynamics. Thus, effective temperatures are not well-defined in these models.Comment: 29 pages, 10 fig

    Topologically disordered systems at the glass transition

    Get PDF
    The thermodynamic approach to the viscosity and fragility of amorphous oxides was used to determine the topological characteristics of the disordered network-forming systems. Instead of the disordered system of atoms we considered the congruent disordered system of interconnecting bonds. The Gibbs free energy of network-breaking defects (configurons) was found based on available viscosity data. Amorphous silica and germania were used as reference disordered systems for which we found an excellent agreement of calculated and measured glass transition temperatures. We reveal that the Hausdorff dimension of the system of bonds changes from Euclidian three-dimensional below to fractal 2.55 ± 0.05-dimensional geometry above the glass transition temperature

    Corresponding States of Structural Glass Formers

    Full text link
    The variation with respect to temperature T of transport properties of 58 fragile structural glass forming liquids (68 data sets in total) are analyzed and shown to exhibit a remarkable degree of universality. In particular, super-Arrhenius behaviors of all super-cooled liquids appear to collapse to one parabola for which there is no singular behavior at any finite temperature. This behavior is bounded by an onset temperature To above which liquid transport has a much weaker temperature dependence. A similar collapse is also demonstrated, over the smaller available range, for existing numerical simulation data.Comment: 6 pages, 2 figures. Updated References, Table Values, Submitted for Publicatio

    Heterogeneities in systems with quenched disorder

    Full text link
    We study the strong role played by structural (quenched) heterogeneities on static and dynamic properties of the Frustrated Ising Lattice Gas in two dimensions, already in the liquid phase. Differently from the dynamical heterogeneities observed in other glass models in this case they may have infinite lifetime and be spatially pinned by the quenched disorder. We consider a measure of local frustration, show how it induces the appearance of spatial heterogeneities and how this reflects in the observed behavior of equilibrium density distributions and dynamic correlation functions.Comment: 8 page

    The Physics of the Colloidal Glass Transition

    Full text link
    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. This kinetic arrest is the colloidal glass transition. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including tremendous increases in viscosity and relaxation times, dynamical heterogeneity, and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.Comment: 56 pages, 18 figures, Revie

    Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    Full text link
    Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.Comment: 15 pages, 8 figure
    corecore