32 research outputs found

    Work extraction form quantum systems with bounded fluctuations in work

    Get PDF
    In the standard framework of thermodynamics work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. We show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount cc. By varying cc we interpolate between the standard and min free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations

    Finite-bath corrections to the second law of thermodynamics

    Get PDF
    The second law of thermodynamics states that a system in contact with a heat bath can undergo a transformation if and only if its free energy decreases. However, the “if” part of this statement is only true when the effective heat bath is infinite. In this article we remove this idealization and derive corrections to the second law in the case where the bath has a finite size, or equivalently finite heat capacity. This can also be translated to processes lasting a finite time, and we show that thermodynamical reversibility is lost in this regime. We do so in full generality, without assuming any particular model for the bath; the only parameters defining the bath are its temperature and heat capacity. We find connections with second order Shannon information theory, in particular, in the case of Landauer erasure. We also consider the case of nonfluctuating work and derive finite-bath corrections to the min and max free energies employed in single-shot thermodynamics

    CpG island methylation is a common finding in colorectal cancer cell lines

    Get PDF
    Tumour cell lines are commonly used in colorectal cancer (CRC) research, including studies designed to assess methylation defects. Although many of the known genetic aberrations in CRC cell lines have been comprehensively described, no studies have been performed on their methylation status. In this study, 30 commonly used CRC cell lines as well as seven primary tumours from individuals with hereditary nonpolyposis colorectal cancer (HNPCC) were assessed for methylation at six CpG islands known to be hypermethylated in colorectal cancer: hMLH1, p16, methylated in tumour (MINT-)-1, -2, -12 and -31. The cell lines were also assessed for microsatellite instability (MSI), ploidy status, hMLH1 expression, and mutations in APC and Ki-ras. Methylation was frequently observed at all examined loci in most cell lines, and no differences were observed between germline-derived and sporadic cell lines. Methylation was found at MINT 1 in 63%, MINT 2 in 57%, MINT 12 in 71%, MINT 31 in 53%, p16 in 71%, and hMLH1 in 30% of cell lines. Overall only one cell line, SW1417, did not show methylation at any locus. Methylation was found with equal frequency in MSI and chromosomally unstable lines. MSI was over-represented in the cell lines relative to sporadic CRC, being detected in 47% of cell lines. The rate of codon 13 Ki-ras mutations was also over three times that expected from in vivo studies. We conclude that CpG island hypermethylation, whether acquired in vivo or in culture, is a ubiquitous phenomenon in CRC cell lines. We suggest that CRC cell lines may be only representative of a small subset of real tumours, and this should be taken into account in the use of CRC cell lines for epigenetic studies

    Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease

    Get PDF
    Keratin 9 was recently identified as an important component of a biomarker panel which demonstrated a high diagnostic accuracy (87%) for Alzheimer’s disease (AD). Understanding how a protein which is predominantly expressed in palmoplantar epidermis is implicated in AD may shed new light on the mechanisms underlying the disease. Here we use immunoassays to examine blood plasma expression patterns of Keratin 9 and its relationship to other AD-associated proteins. We correlate this with the use of an in silico analysis tool VisANT to elucidate possible pathways through which the involvement of Keratin 9 may take place. We identify possible links with Dickkopf-1, a negative regulator of the wnt pathway, and propose that the abnormal expression of Keratin 9 in AD blood and cerebrospinal fluid may be a result of blood brain barrier dysregulation and disruption of the ubiquitin proteasome system. Our findings suggest that dysregulated Keratin 9 expression is a consequence of AD pathology but, as it interacts with a broad range of proteins, it may have other, as yet uncharacterized, downstream effects which could contribute to AD onset and progression
    corecore