87 research outputs found

    BTLA/HVEM Signaling: Milestones in Research and Role in Chronic Hepatitis B Virus Infection

    Get PDF
    B- and T-lymphocyte attenuator (BTLA) is an immune-regulatory receptor, similar to CTLA-4 and PD-1, and is mainly expressed on B-, T-, and all mature lymphocyte cells. Herpes virus entry mediator (HVEM)-BTLA plays a critical role in immune tolerance and immune responses which are areas of intense research. However, the mechanisms of the BTLA and the BTLA/HVEM signaling pathway in human diseases remain unclear. This review describes the research milestones of BTLA and HVEM in chronological order and their role in chronic HBV infection

    Tunable magnetism and electron correlation in Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) by rare-earth engineering

    Full text link
    Rare-earth engineering is an effective way to introduce and tune the magnetism in topological Kagome magnets, which has been acting as a fertile platform to investigate the quantum interactions between geometry, topology, spin, and correlation. Here we report the structure and properties of three newly discovered Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) with various magnetic states. They crystalize in the orthogonal space group Fmmm (No.69), where slightly distorted Ti Kagome lattice, RE triangular lattice, Bi honeycomb and triangular lattices stack along the a axis. By changing the rare earth atoms on RE zag-zig chains, the magnetism can be tuned from nonmagnetic YbTi3Bi4 to short-range ordered PrTi3Bi4 (Tanomaly ~ 8.2 K), and finally to ferromagnetic NdTi3Bi4 (Tc ~ 8.5 K). The measurements of resistivity and specific heat capacity demonstrate an evolution of electron correlation and density of states near the Fermi level with different rare earth atoms. In-situ resistance measurements of NdTi3Bi4 under high pressure further reveal a potential relationship between the electron correlation and ferromagnetic ordering temperature. These results highlight RETi3Bi4 as another family of topological Kagome magnets to explore nontrivial band topology and exotic phases in Kagome materials.Comment: Manuscript:17 pages, 5 figures; Supporting information:11 pages, 11 tables and 10 figure

    A novel DEAH-box helicase 37 mutation associated with differences of sex development

    Get PDF
    ObjectiveTo determine the genetic etiology of a family pedigree with two patients affected by differences of sex development (DSD).MethodsAssess the clinical characteristics of the patients and achieve exome sequencing results and in vitro functional studies.ResultsThe 15-year-old proband, raised as female, presented with delayed puberty and short stature associated with atypical genitalia. Hormonal profile showed hypergonadotrophic hypogonadism. Imaging studies revealed the absence of a uterus and ovaries. The karyotype confirmed a 46, XY pattern. Her younger brother presented with a micropenis and hypoplastic scrotum with non-palpable testis and hypospadias. Laparoscopic exploration was performed on the younger brother. Streak gonads were found and removed due to the risk of neoplastic transformation. Post-operative histopathology showed the co-existence of Wolffian and Müllerian derivatives. Whole-exome sequencing identified a novel mutation (c.1223C>T, p. Ser408Leu) in the Asp-Glu-Ala-His-box helicase 37 gene, which was found to be deleterious by in silico analysis. Segregation analysis of the variant displayed a sex-limited, autosomal dominant, maternal inheritance pattern. In vitro experiments revealed that the substitution of 408Ser by Leu caused decreased DHX37 expression both at the mRNA and protein levels. Moreover, the β-catenin protein was upregulated, and the p53 protein was unaltered by mutant DHX37.ConclusionsWe described a novel mutation (c.1223C>T, p. Ser408Leu) of the DHX37 gene associated with a Chinese pedigree consisting of two 46, XY DSD patients. We speculated that the underlying molecular mechanism might involve upregulation of the β-catenin protein

    Superconductivity above 70 K observed in lutetium polyhydrides

    Full text link
    The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive. The lutetium polyhydrides were successfully synthesized at high pressure and high temperature conditions using a diamond anvil cell in combinations with the in-situ high pressure laser heating technique. The resistance measurements as a function of temperature were performed at the same pressure of synthesis in order to study the transitions of superconductivity (SC). The superconducting transition with a maximum onset temperature (Tc) 71 K was observed at pressure of 218 GPa in the experiments. The Tc decreased to 65 K when pressure was at 181 GPa. From the evolution of SC at applied magnetic fields, the upper critical field at zero temperature {\mu}0Hc2(0) was obtained to be ~36 Tesla. The in-situ high pressure X-ray diffraction experiments imply that the high Tc SC should arise from the Lu4H23 phase with Pm-3n symmetry that forms a new type of hydrogen cage framework different from those reported for previous light rare earth polyhydride superconductors

    A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks

    Get PDF
    A fractal model that represents the geometric characteristics of rock fracture networks is proposed to link the fractal characteristics with the equivalent permeability of the fracture networks. The fracture networks are generated using the Monte Carlo method and have a power law size distribution. The fractal dimension DT is utilized to represent the tortuosity of the fluid flow, and another fractal dimension Df is utilized to represent the geometric distribution of fractures in the networks. The results indicate that the equivalent permeability of a fracture network can be significantly influenced by the tortuosity of the fluid flow, the aperture of the fractures and a random number used to generate the fractal length distribution of the fractures in the network. The correlation of fracture number and fracture length agrees well with the results of previous studies, and the calculated fractal dimensions Df are consistent with their theoretical values, which confirms the reliability of the proposed fractal length distribution and the stochastically generated fracture network models. The optimal hydraulic path can be identified in the longer fractures along the fluid flow direction. Using the proposed fractal model, a mathematical expression between the equivalent permeability K and the fractal dimension Df is proposed for models with large values of Df. The differences in the calculated flow volumes between the models that consider and those that do not consider the influence of fluid flow tortuosity are as high as 17.64-19.51%, which emphasizes that the effects of tortuosity should not be neglected and should be included in the fractal model to accurately estimate the hydraulic behavior of fracture networks
    corecore