6 research outputs found

    Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce

    Get PDF
    The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius.IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities

    Genome Sequence of the Atypical Symbiotic Frankia R43 Strain, a Nitrogen-Fixing and Hydrogen-Producing Actinobacterium

    No full text
    Frankia strain R43 is a nitrogen-fixing and hydrogen-producing symbiotic actinobacterium that was isolated from nodules of Casuarina cunninghamiana but infects only Elaeagnaceae. This communication reports the genome of the strain R43 and provides insights into the microbe genomics and physiological potentials

    Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens

    No full text
    * The mechanisms of enhanced root to shoot metal transport in heavy metal hyperaccumulators are incompletely understood. Here, we compared the distribution of nickel (Ni) over root segments and tissues in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi arvense, and investigated the role of free histidine in Ni xylem loading and Ni transport across the tonoplast. * Nickel accumulation in mature cortical root cells was apparent in T. arvense and in a high-Ni-accumulating T. caerulescens accession, but not in a low-accumulating T. caerulescens accession. * Compared with T. arvense, the concentration of free histidine in T. caerulescens was 10-fold enhanced in roots, but was only slightly higher in leaves, regardless of Ni exposure. Nickel uptake in MgATP-energized root- and shoot-derived tonoplast vesicles was almost completely blocked in T. caerulescens when Ni was supplied as a 1 : 1 Ni-histidine complex, but was uninhibited in T. arvense. Exogenous histidine supply enhanced Ni xylem loading in T. caerulescens but not in T. arvense. * The high rate of root to shoot translocation of Ni in T. caerulescens compared with T. arvense seems to depend on the combination of two distinct characters, that is, a greatly enhanced root histidine concentration and a strongly decreased ability to accumulate histidine-bound Ni in root cell vacuoles
    corecore