8,464 research outputs found

    Smoking\u27s effect on hangover symptoms

    Get PDF

    On Modeling and Estimation for the Relative Risk and Risk Difference

    Full text link
    A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis.Comment: To appear in Journal of the American Statistical Association: Theory and Method

    Congenial Causal Inference with Binary Structural Nested Mean Models

    Full text link
    Structural nested mean models (SNMMs) are among the fundamental tools for inferring causal effects of time-dependent exposures from longitudinal studies. With binary outcomes, however, current methods for estimating multiplicative and additive SNMM parameters suffer from variation dependence between the causal SNMM parameters and the non-causal nuisance parameters. Estimating methods for logistic SNMMs do not suffer from this dependence. Unfortunately, in contrast with the multiplicative and additive models, unbiased estimation of the causal parameters of a logistic SNMM rely on additional modeling assumptions even when the treatment probabilities are known. These difficulties have hindered the uptake of SNMMs in epidemiological practice, where binary outcomes are common. We solve the variation dependence problem for the binary multiplicative SNMM by a reparametrization of the non-causal nuisance parameters. Our novel nuisance parameters are variation independent of the causal parameters, and hence allows the fitting of a multiplicative SNMM by unconstrained maximum likelihood. It also allows one to construct true (i.e. congenial) doubly robust estimators of the causal parameters. Along the way, we prove that an additive SNMM with binary outcomes does not admit a variation independent parametrization, thus explaining why we restrict ourselves to the multiplicative SNMM

    Nested Markov Properties for Acyclic Directed Mixed Graphs

    Full text link
    Directed acyclic graph (DAG) models may be characterized in at least four different ways: via a factorization, the d-separation criterion, the moralization criterion, and the local Markov property. As pointed out by Robins (1986, 1999), Verma and Pearl (1990), and Tian and Pearl (2002b), marginals of DAG models also imply equality constraints that are not conditional independences. The well-known `Verma constraint' is an example. Constraints of this type were used for testing edges (Shpitser et al., 2009), and an efficient marginalization scheme via variable elimination (Shpitser et al., 2011). We show that equality constraints like the `Verma constraint' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via Markov properties and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We show that marginal distributions of DAG models lie in this model, prove that a characterization of these constraints given in (Tian and Pearl, 2002b) gives an alternative definition of the model, and finally show that the fixing operation we used to define the model can be used to give a particularly simple characterization of identifiable causal effects in hidden variable graphical causal models.Comment: 67 pages (not including appendix and references), 8 figure
    • …
    corecore