15 research outputs found
Detecting Gravitational Wave Memory in the Next Galactic Core-Collapse Supernova
We present an approach to detecting (linear) gravitational wave memory in a
Galactic core-collapse supernova using current interferometers. Gravitational
wave memory is an important prediction of general relativity that has yet to be
confirmed. Our approach uses a combination of Linear Prediction Filtering and
Matched-Filtering. We present the results of our approach on data from
core-collapse supernova simulations that span a range of progenitor mass and
metallicity. We are able to detect gravitational wave memory out to 10 kpc. We
also present the False Alarm Probabilities assuming an On-Source Window
compatible with the presence of a neutrino detection.Comment: 8 pages, 5 figure
Ultralight vector dark matter search using data from the KAGRA O3GK run
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
Omega-3 and Omega-6 Polyunsaturated Fatty Acid Levels and Correlations with Symptoms in Children with Attention Deficit Hyperactivity Disorder, Autistic Spectrum Disorder and Typically Developing Controls
BACKGROUND:There is evidence that children with Attention Deficit Hyperactivity Disorder (ADHD) and Autistic Spectrum Disorder (ASD) have lower omega-3 polyunsaturated fatty acid (n-3 PUFA) levels compared with controls and conflicting evidence regarding omega-6 (n-6) PUFA levels. OBJECTIVES:This study investigated whether erythrocyte n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were lower and n-6 PUFA arachidonic acid (AA) higher in children with ADHD, ASD and controls, and whether lower n-3 and higher n-6 PUFAs correlated with poorer scores on the Australian Twin Behaviour Rating Scale (ATBRS; ADHD symptoms) and Test of Variable Attention (TOVA) in children with ADHD, and Childhood Autism Rating Scale (CARS) in children with ASD. METHODS:Assessments and blood samples of 565 children aged 3-17 years with ADHD (n = 401), ASD (n = 85) or controls (n = 79) were analysed. One-way ANOVAs with Tukey's post-hoc analysis investigated differences in PUFA levels between groups and Pearson's correlations investigated correlations between PUFA levels and ATBRS, TOVA and CARS scores. RESULTS:Children with ADHD and ASD had lower DHA, EPA and AA, higher AA/EPA ratio and lower n-3/n-6 than controls (P<0.001 except AA between ADHD and controls: P = 0.047). Children with ASD had lower DHA, EPA and AA than children with ADHD (P<0.001 for all comparisons). ATBRS scores correlated negatively with EPA (r = -.294, P<0.001), DHA (r = -.424, P<0.001), n-3/n-6 (r = -.477, P<0.001) and positively with AA/EPA (r = .222, P <.01). TOVA scores correlated positively with DHA (r = .610, P<0.001), EPA (r = .418, P<0.001) AA (r = .199, P<0.001), and n-3/n-6 (r = .509, P<0.001) and negatively with AA/EPA (r = -.243, P<0.001). CARS scores correlated significantly with DHA (r = .328, P = 0.002), EPA (r = -.225, P = 0.038) and AA (r = .251, P = 0.021). CONCLUSIONS:Children with ADHD and ASD had low levels of EPA, DHA and AA and high ratio of n-6/n-3 PUFAs and these correlated significantly with symptoms. Future research should further investigate abnormal fatty acid metabolism in these disorders
Reduced Symptoms of Inattention after Dietary Omega-3 Fatty Acid Supplementation in Boys with and without Attention Deficit/Hyperactivity Disorder
Attention deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders, and is often treated with stimulant medication. Nonpharmacological treatments include dietary supplementation with omega-3 fatty acids, although their effectiveness remains to be shown conclusively. In this study, we investigated the effects of dietary omega-3 fatty acid supplementation on ADHD symptoms and cognitive control in young boys with and without ADHD. A total of 40 boys with ADHD, aged 8–14 years, and 39 matched, typically developing controls participated in a 16-week double-blind randomized placebo-controlled trial. Participants consumed 10 g of margarine daily, enriched with either 650 mg of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) each or placebo. Baseline and follow-up assessments addressed ADHD symptoms, fMRI of cognitive control, urine homovanillic acid, and cheek cell phospholipid sampling. EPA/DHA supplementation improved parent-rated attention in both children with ADHD and typically developing children. Phospholipid DHA level at follow-up was higher for children receiving EPA/DHA supplements than placebo. There was no effect of EPA/DHA supplementation on cognitive control or on fMRI measures of brain activity. This study shows that dietary supplementation with omega-3 fatty acids reduces symptoms of ADHD, both for individuals with ADHD and typically developing children. This effect does not appear to be mediated by cognitive control systems in the brain, as no effect of supplementation was found here. Nonetheless, this study offers support that omega-3 supplementation may be an effective augmentation for pharmacological treatments of ADHD (NCT01554462: The Effects of EPA/DHA Supplementation on Cognitive Control in Children with ADHD; http://clinicaltrials.gov/show/NCT01554462).Neuropsychopharmacology advance online publication, 22 April 2015; doi:10.1038/npp.2015.73