1,674 research outputs found

    Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition

    Get PDF
    Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a shift of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis

    Diffusion MR microscopy of cortical development in the mouse embryo

    Get PDF
    Cortical development in the mouse embryo involves complex changes in the microstructure of the telencephalic wall, which are challenging to examine using three-dimensional (3D) imaging techniques. In this study, high-resolution 3D diffusion magnetic resonance (dMR) microscopy of the embryonic mouse cortex is presented. Using diffusion-weighted gradient- and spin-echo based acquisition, dMR microimaging data were acquired from fixed mouse embryos at 7 developmental stages from embryonic day (E)12.5 to E18.5. The dMR imaging (dMRI) contrasts revealed microscopic structural detail in the mouse telencephalic wall, allowing delineation of transient zones in the developing cortex based on their unique diffusion signatures. With the high-resolution 3D data of the mouse embryo, we were able to visualize the complex microstructure of embryonic cerebral tissue and to resolve its regional and temporal evolution during cortical formation. Furthermore, averaged dMRI contrasts generated via deformable registration revealed distinct spatial and temporal gradients of anisotropy variation across the developing embryonic cortical plate and the ventricular zone. The findings of this study demonstrate the potential of 3D dMRI to resolve the complex microstructure of the embryonic mouse cortex, and will be important for investigations of corticogenesis and its disruption in embryonic mouse models

    PAX6 does not regulate Nfia and Nfib expression during neocortical development

    Get PDF
    The Nuclear factor I (NFI) family of transcription factors regulates proliferation and differentiation throughout the developing central nervous system. In the developing telencephalon of humans and mice, reduced Nfi expression is associated with agenesis of the corpus callosum and other neurodevelopmental defects. Currently, little is known about how Nfi expression is regulated during early telencephalic development. PAX6, a transcription factor important for telencephalic development, has been proposed as an upstream regulator of Nfi expression in the neocortex. Here we demonstrate that, in the developing neocortex of mice, NFIA and NFIB are endogenously expressed in gradients with high caudo-medial to low rostro-lateral expression and are most highly expressed in the cortical plate. We found that this expression pattern deviates from that of PAX6, suggesting that PAX6 does not drive Nfi expression. This is supported by in vitro reporter assays showing that PAX6 overexpression does not regulate Nfi promoter activity. Similarly, we also found that in the Pax6 Small Eye mutant, no changes in Nfi mRNA or protein expression are observed in the neocortical ventricular zone where PAX6 and the NFIs are expressed. Together these data demonstrate that in mice, PAX6 is not a transcriptional activator of Nfi expression during neocortical development

    Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice

    Get PDF
    Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-/-) mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-/-) mice. NFI-A protein is expressed in all three midline populations. In Nfia(-/-) mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium griseum and the glial wedge are greatly reduced or absent and consequently Slit2 expression is also reduced. Although callosal axons approach the midline, they fail to cross and extend aberrantly into the septum. The hippocampal commissure is absent or reduced, whereas the ipsilaterally projecting perforating axons (Hankin and Silver, 1988; Shu et al., 2001) appear relatively normal. These results support an essential role for midline glia in callosum development and a role for Nfia in the formation of midline glial structures

    Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion

    Get PDF
    The left and right sides of the nervous system communicate via commissural axons that cross the midline during development using evolutionarily conserved molecules. These guidance cues have been particularly well studied in the mammalian spinal cord, but it remains unclear whether these guidance mechanisms for commissural axons are similar in the developing forebrain, in particular for the corpus callosum, the largest and most important commissure for cortical function. Here, we show that Netrin1 initially attracts callosal pioneering axons derived from the cingulate cortex, but surprisingly is not attractive for the neocortical callosal axons that make up the bulk of the projection. Instead, we show that Netrin-deleted in colorectal cancer signaling acts in a fundamentally different manner, to prevent the Slit2-mediated repulsion of precrossing axons thereby allowing them to approach and cross the midline. These results provide the first evidence for how callosal axons integrate multiple guidance cues to navigate the midline

    Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging

    Get PDF
    Thehumanbrain is extraordinarily complex, and yet its origin is a simple tubular structure. Characterizing its anatomy at different stages of human fetal brain development not only aids in understanding this highly ordered process but also provides clues to detecting abnormalities caused by genetic or environmental factors. During the second trimester of human fetal development, neural structures in the brain undergo significant morphological changes. Diffusion tensor imaging (DTI), a novel method of magnetic resonance imaging, is capable of delineating anatomical components with high contrast and revealing structures at the microscopic level. In this study, high-resolution and high-signal-to-noise-ratio DTI data of fixed tissues of second-trimester human fetal brains were acquired and analyzed. DTI color maps and tractography revealed that important white matter tracts, such as the corpus callosum and uncinate and inferior longitudinal fasciculi, become apparent during this period. Three-dimensional reconstruction shows that major brain fissures appear while most of the cerebral surface remains smooth until the end of the second trimester. A dominant radial organization was identified at 15 gestational weeks, followed by both laminar and radial architectures in the cerebral wall throughout the remainder of the second trimester. Volumetric measurements of different structures indicate that the volumes of basal ganglia and ganglionic eminence increase along with that of the whole brain, while the ventricle size decreases in the later second trimester. The developing fetal brain DTI database presented can be used for education, as an anatomical research reference, and for data registration

    Specific glial populations regulate hippocampal morphogenesis

    Get PDF
    The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major site for adult neurogenesis. Critical to these functions is the proper organization of the hippocampus during development. Radial glia are known to regulate hippocampal formation, but their precise function in this process is yet to be defined. We find that in Nuclear Factor I b (Nfib)-deficient mice, a subpopulation of glia from the ammonic neuroepithelium of the hippocampus fail to develop. This results in severe morphological defects, including a failure of the hippocampal fissure, and subsequently the dentate gyrus, to form. As in wild-type mice, immature nestin-positive glia, which encompass all types of radial glia, populate the hippocampus in Nfib-deficient mice at embryonic day 15. However, these fail to mature into GLAST- and GFAP-positive glia, and the supragranular glial bundle is absent. In contrast, the fimbrial glial bundle forms, but alone is insufficient for proper hippocampal morphogenesis. Dentate granule neurons are present in the mutant hippocampus but their migration is aberrant, likely resulting from the lack of the complete radial glial scaffold usually provided by both glial bundles. These data demonstrate a role for Nfib in hippocampal fissure and dentate gyrus formation, and that distinct glial bundles are critical for correct hippocampal morphogenesis

    The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria

    Get PDF
    Understanding the targets and mechanisms of human immunity to malaria is important for advancing the development of highly efficacious vaccines and serological tools for malaria surveillance. The PfRH5 and PfRipr proteins form a complex on the surface of P. falciparum merozoites that is essential for invasion of erythrocytes and are vaccine candidates. We determined IgG subclass responses to these proteins among malaria-exposed individuals in Papua New Guinea and their association with protection from malaria in a longitudinal cohort of children. Cytophilic subclasses, IgG1 and IgG3, were predominant with limited IgG2 and IgG4, and IgG subclass-specific responses were higher in older children and those with active infection. High IgG3 to PfRH5 and PfRipr were significantly and strongly associated with reduced risk of malaria after adjusting for potential confounding factors, whereas associations for IgG1 responses were generally weaker and not statistically significant. Results further indicated that malaria exposure leads to the co-acquisition of IgG1 and IgG3 to PfRH5 and PfRipr, as well as to other PfRH invasion ligands, PfRH2 and PfRH4. These findings suggest that IgG3 responses to PfRH5 and PfRipr may play a significant role in mediating naturally-acquired immunity and support their potential as vaccine candidates and their use as antibody biomarkers of immunity

    The transcription factor Nfix is essential for normal brain development

    Get PDF
    Background: The Nuclear Factor I (NFI) multi-gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects; Nfib-deficient mice have defects in lung maturation and show callosal agenesis and forebrain defects resembling those seen in Nfia-deficient animals, while Nficdeficient mice have defects in tooth root formation. Recently the Nfix gene has been disrupted and these studies indicated that there were largely uncharacterized defects in brain and skeletal development in Nfix-deficient mice. Results: Here we show that disruption of Nfix by Cre-recombinase mediated excision of the 2nd exon results in defects in brain development that differ from those seen in Nfia and Nfib KO mice. In particular, complete callosal agenesis is not seen in Nfix-/- mice but rather there appears to be an overabundance of aberrant Pax6- and doublecortin-positive cells in the lateral ventricles of Nfix-/- mice, increased brain weight, expansion of the cingulate cortex and entire brain along the dorsal ventral axis, and aberrant formation of the hippocampus. On standard lab chow Nfix-/- animals show a decreased growth rate from ~P8 to P14, lose weight from ~P14 to P22 and die at ~P22. If their food is supplemented with a soft dough chow from P10, Nfix-/- animals show a lag in weight gain from P8 to P20 but then increase their growth rate. A fraction of the animals survive to adulthood and are fertile. The weight loss correlates with delayed eye and ear canal opening and suggests a delay in the development of several epithelial structures in Nfix-/- animals. Conclusion: These data show that Nfix is essential for normal brain development and may be required for neural stem cell homeostasis. The delays seen in eye and ear opening and the brain morphology defects appear independent of the nutritional deprivation, as rescue of perinatal lethality with soft dough does not eliminate these defects

    A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections

    Get PDF
    The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene-neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene-neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain
    • …
    corecore