3,518 research outputs found

    Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Full text link
    The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of momentum. We show that while this observation is inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that the strong anisotropies measured by other probes sensitive to the residual density of states are not related to the pairing interaction itself, but rather emerge naturally from the smaller lifetime of the superconducting Cooper pairs that is a direct consequence of the momentum dependent interband scattering inherent to these materials.Comment: 7 pages, 5 figure

    Orbital Characters Determined from Fermi Surface Intensity Patterns using Angle-Resolved Photoemission Spectroscopy

    Full text link
    In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based superconductors Ba0.6_{0.6}K0.4_{0.4}Fe2_{2}As2_{2} and FeSe0.45_{0.45}Te0.55_{0.55}, we introduce a method to calculate photoemission matrix elements. We compare our simulations to experimental data obtained with various experimental configurations of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states probed, information that is destroyed after the data symmetrization process often performed in the analysis of angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating mainly from the dxyd_{xy}, dxzd_{xz} and dyzd_{yz} orbitals in these materials.Comment: 16 pages, 9 figures. Figures modified, typos corrected, appendix adde

    Dense and accurate motion and strain estimation in high resolution speckle images using an image-adaptive approach

    Get PDF
    Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman-McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques

    Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe_{1-x}Ru_x)_2As_2

    Full text link
    We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 for a wide range of Ru concentrations (0.15 ≤\leq \emph{x} ≤\leq 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.Comment: 4 pages, 4 figure

    Observation of strong-coupling pairing with weakened Fermi-surface nesting at optimal hole doping in Ca0.33_{0.33}Na0.67_{0.67}Fe2_2As2_2

    Full text link
    We report an angle-resolved photoemission investigation of optimally-doped Ca0.33_{0.33}Na0.67_{0.67}Fe2_2As2_2. The Fermi surface topology of this compound is similar to that of the well-studied Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 material, except for larger hole pockets resulting from a higher hole concentration per Fe atoms. We find that the quasi-nesting conditions are weakened in this compound as compared to Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2. As with Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 though, we observe nearly isotropic superconducting gaps with Fermi surface-dependent magnitudes. A small variation in the gap size along the momentum direction perpendicular to the surface is found for one of the Fermi surfaces. Our superconducting gap results on all Fermi surface sheets fit simultaneously very well to a global gap function derived from a strong coupling approach, which contains only 2 global parameters.Comment: 5 pages, 4 figure

    Differentiation, Distribution and γδ T Cell-Driven Regulation of IL-22-Producing T Cells in Tuberculosis

    Get PDF
    Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vγ2Vδ2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNγ-producing Vγ2Vδ2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNγ neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vγ2Vδ2 T-cell-driven IFNγ-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vγ2Vδ2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB
    • …
    corecore