33 research outputs found

    Characterisation of silicon strip detectors with a binary readout chip for X-ray imaging

    Get PDF
    In this paper we describe the development of a multichannel readout system for X-ray measurements using silicon strip detectors. The developed system is based on a binary readout architecture and optimised for detection of X-rays of energies in the range 6}30 keV. The critical component of the system is the 32-channel front-end chip, RX32N, which has been optimised for low noise performance, small channel to channel variation and high counting rate operation. The performance of the chip is demonstrated by measurements of complex X-ray spectra using silicon strip and pad detectors. The obtained results allow to use the system at room temperature with the detection threshold in the range from 500 to 10 000 electrons, which is enough in many crystallographic and medical imaging applications. ( 2000 Elsevier Scienc

    Mass discrimination using double-sided silicon microstrip detectors for pions and protons at intermediate energies

    Get PDF
    Prototype silicon detector modules for the vertex detector of the FINUDA experiment were tested at TRIUMF using pions and protons at 270 and 408 MeV/c in order to study their use for mass discrimination based on energy deposition. The detector modules were constructed using double-sided silicon detectors based on the ALEPH design, read out by VA1 integrated circuits. The test modules and apparatus are described, details of the data analysis are discussed, and the results are presented together with GEANT simulations. Particular attention is given to the detector response for the various particles, with signals ranging from the minimum-ionising pions at 408 MeV/c up to 20 times minimum-ionising for the protons at 270 MeV/c. ( 1999 Elsevier Science B.V. All rights reserved

    Design and characterization of the readout ASIC for the BESIII CGEM detector

    Get PDF
    TIGER (Turin Integrated Gem Electronics for Readout) is a mixed-mode ASIC for the readout of signals from CGEM (Cylindrical Gas Electron Multiplier) detector in the upgraded inner tracker of the BESIII experiment, carried out at BEPCII in Beijing. The ASIC includes 64 channels, each of which features a dual-branch architecture optimized for timing and energy measurement. The input signal time-of-arrival and charge measurement is provided by low-power TDCs, based on analogue interpolation techniques, and Wilkinson ADCs, with a fully-digital output. The silicon results of TIGER first prototype are presented showing its full functionality.Peer Reviewe

    Particle beam microstructure reconstruction and coincidence discrimination in PET monitoring for hadron therapy

    Get PDF
    Positron emission tomography is one of the most mature techniques for monitoring the particles range in hadron therapy, aiming to reduce treatment uncertainties and therefore the extent of safety margins in the treatment plan. In-beam PET monitoring has been already performed using inter-spill and post-irradiation data, i.e., while the particle beam is off or paused. The full beam acquisition procedure is commonly discarded because the particle spills abruptly increase the random coincidence rates and therefore the image noise. This is because random coincidences cannot be separated by annihilation photons originating from radioactive decays and cannot be corrected with standard random coincidence techniques due to the time correlation of the beam-induced background with the ion beam microstructure. The aim of this paper is to provide a new method to recover in-spill data to improve the images obtained with full-beam PET acquisitions. This is done by estimating the temporal microstructure of the beam and thus selecting input PET events that are less likely to be random ones. The PET detector we used was the one developed within the INSIDE project and tested at the CNAO synchrotron-based facility. The data were taken on a PMMA phantom irradiated with 72 MeV proton pencil beams. The obtained results confirm the possibility of improving the acquired PET data without any external signal coming from the synchrotron or ad-hoc detectors

    Results from CHIPIX-FE0, a Small Scale Prototype of a New Generation Pixel Readout ASIC in 65nm CMOS for HL-LHC

    Get PDF
    CHIPIX65-FE0 is a readout ASIC in CMOS 65nm designed by the CHIPIX65 project for a pixel detector at the HL-LHC, consisting of a matrix of 64x64 pixels of dimension 50x50 μm2. It is fully functional, can work at low thresholds down to 250e− and satisfies all the specifications. Results confirm low-noise, fast performance of both the synchronous and asynchronous front-end in a complex digital chip. CHIPIX65-FE0 has been irradiated up to 600 Mrad and is only marginally affected on analog performance. Further irradiation to 1 Grad will be performed. Bump bonding to silicon sensors is now on going and detailed measurements will be presented. The HL-LHC accelerator will constitute a new frontier for particle physics after year 2024. One major experimental challenge resides in the inner tracking detectors, measuring particle position: here the dimension of the sensitive area (pixel) has to be scaled down with respect to LHC detectors. This paper describes the results obtained by CHIPIX65-FE0, a readout ASIC in CMOS 65nm designed by the CHIPIX65 project as small-scale demonstrator for a pixel detector at the HL-LHC. It consists of a matrix of 64x64 pixels of dimension 50x50 um2 pixels and contains several pieces that are included in RD53A, a large scale ASIC designed by the RD53 Collaboration: two out of three front-ends (a synchronous and an asynchronous architecture); several building blocks; a (4x4) pixel region digital architecture with central local buffer storage, complying with a 3 GHz/cm2 hit rate and a 1 MHz trigger rate maintaining a very high efficiency (above 99%). The chip is 100% functional, either running in triggered or trigger-less mode. All building-blocks (DAC, ADC, Band Gap, SER, sLVS-TX/RX) and very front ends are working as expected. Analog performance shows a remarkably low ENC of 90e-, a fast-rise time below 25ns and low-power consumption (about 4μA/pixel) in both synchronous and asynchronous front-ends; a very linear behavior of CSA and discriminator. No significant cross talk from digital electronics has been measured, achieving a low threshold of 250e-. Signal digitization is obtained with a 5b-Time over Threshold technique and is shown to be fairly linear, working well either at 80 MHz or with higher frequencies of 300 MHz obtained with a tunable local oscillator. Irradiation results up to 600 Mrad at low temperature (-20°C) show that the chip is still fully functional and analog performance is only marginally degraded. Further irradiation will be performed up to 1 Grad either at low or room temperature, to further understand the level of radiation hardness of CHIPIX65-FE0. We are now in the process of bump bonding CHIPIX65-FE0 to 3D and possibly planar silicon sensors during spring. Detailed results will be presented in the conference paper

    Online proton therapy monitoring: Clinical test of a Silicon-photodetector-based in-beam PET

    Get PDF
    Particle therapy exploits the energy deposition pattern of hadron beams. The narrow Bragg Peak at the end of range is a major advantage but range uncertainties can cause severe damage and require online verification to maximise the effectiveness in clinics. In-beam Positron Emission Tomography (PET) is a non-invasive, promising in-vivo technique, which consists in the measurement of the β+ activity induced by beam-tissue interactions during treatment, and presents the highest correlation of the measured activity distribution with the deposited dose, since it is not much influenced by biological washout. Here we report the first clinical results obtained with a state-of-the-art in-beam PET scanner, with on-the-fly reconstruction of the activity distribution during irradiation. An automated time-resolved quantitative analysis was tested on a lacrimal gland carcinoma case, monitored during two consecutive treatment sessions. The 3D activity map was reconstructed every 10 s, with an average delay between beam delivery and image availability of about 6 s. The correlation coefficient of 3D activity maps for the two sessions (above 0.9 after 120 s) and the range agreement (within 1 mm) prove the suitability of in-beam PET for online range verification during treatment, a crucial step towards adaptive strategies in particle therapy

    First Measurements of a Prototype of a New Generation Pixel Readout ASIC in 65 nm CMOS for Extreme Rate HEP Detectors at HL-LHC

    Get PDF
    A first prototype of a readout ASIC in CMOS 65nm for a pixel detector at High Luminosity LHC is described. The pixel cell area is 50x50 um2 and the matrix consists of 64x64 pixels. The chip was designed to guarantee high efficiency at extreme data rates for very low signals and with low power consumption. Two different analogue front-end designs, one synchronous and one asynchronous, were implemented, both occupying an area of 35x35 um2. ENC value is below 100e- for an input capacitance of 50 fF and in-time threshold below 1000e-. Leakage current compensation up to 50 nA with power consumption below 5 uW. A ToT technique is used to perform charge digitization with 5-bit precision using either a 40 MHz clock or a local Fast Oscillator up to 800 MHz. Internal 10-bit DAC's are used for biasing, while monitoring is provided by a 12-bit ADC. A novel digital architecture has been developed to ensure above 99.5% hit efficiency at pixel hit rates up to 3 GHz/cm2, trigger rates up to 1 MHz and trigger latency of 12.5 us. The total power consumption per pixel is below 5uW. Analogue dead-time is below 1%. Data are sent via a serializer connected to a CMOS-to-SLVS transmitter working at 320 MHz. All IP-blocks and front-ends used are silicon-proven and tested after exposure to ionizing radiation levels of 500-800 Mrad. The chip was designed as part of the Italian INFN CHIPIX65 project and in close synergy with the international CERN RD53 and was submitted in July 2016 for production. Early test results for both front-ends regarding minimum threshold, auto-zeroing and low-noise performance are high encouraging and will be presented in this paper

    A Hydrogenated amorphous silicon detector for Space Weather Applications

    Full text link
    The characteristics of a hydrogenated amorphous silicon (a-Si:H) detector are presented here for monitoring in space solar flares and the evolution of large energetic proton events up to hundreds of MeV. The a-Si:H presents an excellent radiation hardness and finds application in harsh radiation environments for medical purposes, for particle beam characterization and in space weather science and applications. The critical flux detection threshold for solar X rays, soft gamma rays, electrons and protons is discussed in detail.Comment: 32 pages, 13 figures, submitted to Experimental Astronom

    Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations

    Get PDF
    Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment. Methods: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the change. Results: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of treatment. Conclusions: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments
    corecore