167 research outputs found

    Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas.

    Get PDF
    We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional Bose gas with tunable interactions. Over a wide range of interaction strengths we find excellent agreement with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition. This allows us to quantitatively show, without any free parameters, that the interaction-driven BKT transition smoothly converges onto the purely quantum-statistical Bose-Einstein condensation transition in the limit of vanishing interactions.This work was supported by AFOSR, ARO, DARPA OLE, and EPSRC [Grant No. EP/K003615/1]. N. N. acknowledges support from Trinity College, Cambridge, R. P. S. from the Royal Society, and K. G. H. V. from DAAD.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevLett.114.25530

    Macrophage immunomodulation: An indispensable tool to evaluate the performance of wound dressing biomaterials:

    Get PDF
    A major burden of the healthcare system resides in providing proper medical treatment for all types of chronic wounds, which are usually treated with dressings to induce a faster regeneration. Henc..

    Validation of in vitro assays in three-dimensional human dermal constructs

    Get PDF
    Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially “murine in vitro dermal construct” based on L929 cells was generated, leading to the development of “human in vitro dermal construct” consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue®, RealTime-Glo™ MT, and CellTiter-Glo® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the “shaking time” to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model. </jats:p
    corecore