55 research outputs found
Protection From Clinical Peripheral Sensory Neuropathy in Alström Syndrome in Contrast to Early-Onset Type 2 Diabetes
OBJECTIVE—Alström syndrome, with type 2 diabetes, and blindness could confer a high risk of foot ulceration. Clinical testing for neuropathy in Alström syndrome and matched young-onset type 2 diabetic subjects was therefore undertaken
Glucagon-like peptide-1 analogues in monogenic syndromic obesity:Real-world data from a large cohort of Alström syndrome patients
AIM: To examine the real-world efficacy of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in monogenic obesity in patients with Alström syndrome (ALMS).METHODS: We screened 72 UK adult patients with ALMS and offered treatment to 34 patients meeting one of the following criteria: body mass index of 25 kg/m2 or higher, insulin resistance, suboptimal glycaemic control on antihyperglycaemic medications or non-alcoholic fatty liver disease.RESULTS: In total, 30 patients, with a mean age of 31 ± 11 years and a male to-female ratio of 2:1, completed 6 months of treatment with GLP-1 RAs either in the form of semaglutide or exenatide. On average, treatment with GLP-1 RAs reduced body weight by 5.4 ± 1.7 (95% confidence interval [CI] 3.6-7) kg and HbA1c by 12 ± 3.3 (95% CI 8.7-15.3) mmol/mol, equating to 6% weight loss (P < .01) and 1.1% absolute reduction in HbA1c (P < .01). Significant improvements were also observed in serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and alanine aminotransferase. The improvement of metabolic variables in our cohort of monogenic syndromic obesity was comparable with data for polygenic obesity, irrespective of weight loss.CONCLUSIONS: Data from our centre highlight the non-inferiority of GLP-1 RAs in monogenic syndromic obesity to the available GLP-1 RA-use data in polygenic obesity, therefore, these agents can be considered as a treatment option in patients with ALMS, as well as other forms of monogenic obesity.</p
Cardiac magnetic resonance imaging in Alström syndrome
<p>Abstract</p> <p>Background</p> <p>A case series of the cardiac magnetic resonance imaging findings in seven adult Alström patients.</p> <p>Methods</p> <p>Seven patients from the National Specialist Commissioning Group Centre for Alström Disease, Torbay, England, UK, completed the cardiac magnetic resonance imaging protocol to assess cardiac structure and function in Alström cardiomyopathy.</p> <p>Results</p> <p>All patients had some degree of left and right ventricular dysfunction. Patchy mid wall gadolinium delayed enhancement was demonstrated, suggesting an underlying fibrotic process. Some degree of cardiomyopathy was universal. No evidence of myocardial infarction or fatty infiltration was demonstrated, but coronary artery disease cannot be completely excluded. Repeat scanning after 18 months in one subject showed progression of fibrosis and decreased left ventricular function.</p> <p>Conclusion</p> <p>Adult Alström cardiomyopathy appears to be a fibrotic process causing impairment of both ventricles. Serial cardiac magnetic resonance scanning has helped clarify the underlying disease progression and responses to treatment. Confirmation of significant mutations in the <it>ALMS1 </it>gene should lead to advice to screen the subject for cardiomyopathy, and metabolic disorders.</p
Diffuse left ventricular interstitial fibrosis is associated with sub-clinical myocardial dysfunction in Alström Syndrome : an observational study
BACKGROUND: Alström syndrome is a rare inherited ciliopathy with progressive multisystem involvement. Dilated cardiomyopathy is common in infancy and recurs or presents de novo in adults with high rates of premature cardiovascular death. Although Alström syndrome is characterised by fibrosis in solid organs such as the liver, the pathogenesis of related cardiomyopathy are not clear. To date it is not known whether diffuse interstitial myocardial fibrosis is present before the onset of heart failure symptoms or changes in conventional parameters of left ventricular function. METHODS: In this observational study, 26 patients with Alström syndrome (mean age 27 ± 9 years, 65 % male, 24 h ABPM 130 ± 14 / 77 ± 9 mmHg) without symptomatic cardiovascular disease were recruited from a single centre and compared to matched healthy controls. All subjects underwent cardiac MRI (1.5 T) to assess ventricular function, diffuse interstitial myocardial fibrosis by measurement of extracellular volume on T1-mapping (MOLLI) and coarse replacement fibrosis using standard late gadolinium enhancement imaging. RESULTS: Global extracellular volume was increased in Alström syndrome with wider variation compared to controls (0.30 ± 0.05 vs. 0.25 ± 0.01, p < 0.05). Left ventricular long axis function and global longitudinal strain were impaired in Alström syndrome without change in ejection fraction, ventricular size or atrial stress (NT-proBNP) (p < 0.05). Global extracellular volume was associated with reduced peak systolic longitudinal strain (r = −0.73, p < 0.01) and strain rate (r = −0.57, p < 0.01), increased QTc interval (r = 0.49, p < 0.05) and serum triglycerides (r = 0.66, p < 0.01). Nine (35 %) patients had diffuse mid-wall late gadolinium enhancement in a non-coronary artery distribution. CONCLUSION: Diffuse interstitial myocardial fibrosis is common in Alström syndrome and is associated with impaired left ventricular systolic function. Serial studies are required to determine whether global extracellular volume may be an independent imaging biomarker of vulnerability to dilated cardiomyopathy and heart failure
Hepatic and adipose phenotype in Alström syndrome
BACKGROUND AND AIMS: Alström syndrome (AS) is a recessive monogenic syndrome characterized by obesity, extreme insulin resistance and multi-organ fibrosis. Despite phenotypically being high risk of non-alcoholic fatty liver disease (NAFLD), there is a lack of data on the extent of fibrosis in the liver and its close links to adipose in patients with AS. Our aim was to characterize the hepatic and adipose phenotype in patients with AS. METHODS: Observational cohort study with comprehensive assessment of metabolic liver phenotype including liver elastography (Fibroscan® ), serum Enhanced Liver Fibrosis (ELF) Panel and liver histology. In addition, abdominal adipose histology and gene expression was assessed. We recruited 30 patients from the UK national AS clinic. A subset of six patients underwent adipose biopsies which was compared with control tissue from nine healthy participants. RESULTS: Patients were overweight/obese (BMI 29.3 (25.95-34.05) kg/m2 ). A total of 80% (24/30) were diabetic; 74% (20/27) had liver ultrasound scanning suggestive of NAFLD. As judged by the ELF panel, 96% (24/25) were categorized as having fibrosis and 10/21 (48%) had liver elastography consistent with advanced liver fibrosis/cirrhosis. In 7/8 selected cases, there was evidence of advanced NAFLD on liver histology. Adipose tissue histology showed marked fibrosis as well as disordered pro-inflammatory and fibrotic gene expression profiles. CONCLUSIONS: NAFLD and adipose dysfunction are common in patients with AS. The severity of liver disease in our cohort supports the need for screening of liver fibrosis in AS.Alström UKThis is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/liv.1316
Biodistribution PET/CT study of hemoglobin-DFO-89Zr complex in healthy and lung tumor-bearing mice
Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time 89Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine β93 is the sole attachment moiety to the αβ-protomer of Hb. The Hb-DFO complex shows quantitative uptake of 89Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells
Biodistribution PET/CT study of Hemoglobin-DFO-89Zr complex in healthy and lung tumor-bearing mice
Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time 89Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine β93 is the sole attachment moiety to the αβ-protomer of Hb. The Hb-DFO complex shows quantitative uptake of 89Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells
- …