6 research outputs found

    Noncanonical function of DGCR8 controls mESC exit from pluripotency

    Get PDF
    Mouse embryonic stem cells (mESCs) deficient for DGCR8, a key component of the microprocessor complex, present strong differentiation defects. However, the exact reasons impairing their commitment remain elusive. The analysis of newly generated mutant mESCs revealed that DGCR8 is essential for the exit from the pluripotency state. To dissociate canonical versus noncanonical functions of DGCR8, we complemented the mutant mESCs with a phosphomutant DGCR8, which restored microRNA levels but did not rescue the exit from pluripotency defect. Integration of omics data and RNA immunoprecipitation experiments established DGCR8 as a direct interactor of Tcf7l1 mRNA, a core component of the pluripotency network. Finally, we found that DGCR8 facilitated the splicing of Tcf7l1, an event necessary for the differentiation of mESCs. Our data reveal a new noncanonical function of DGCR8 in the modulation of the alternative splicing of Tcf7l1 mRNA in addition to its established function in microRNA biogenesis

    Fast In Vitro Procedure to Identify Extraembryonic Differentiation Defect of Mouse Embryonic Stem Cells

    Get PDF
    Mouse embryonic stem cells (mESCs) are a powerful model to study early mouse development. These blastocyst-derived cells can maintain pluripotency and differentiate into the three embryonic germ layers and an extraembryonic layer, the extraembryonic endoderm (ExEn), which shares similar molecular markers to the definitive endoderm. Here, we present a fast procedure to identify a differentiation defect of mESCs toward ExEn in vitro through the molecular and cellular characterization of embryoid bodies, followed by direct differentiation of mESCs into ExEn

    Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity

    No full text
    DNA methyltrasferases play important role during mouse embryo development. Here the authors reveal the consequences of genetic inactivation of Dnmt1, Dnmt3a and Dnmt3b on the methylome and transcriptome of mouse embryos genome-wide

    Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells

    Get PDF
    In mouse, although four Argonaute (AGO) proteins with partly overlapping functions in small-RNA pathways exist, only Ago2 deficiency causes embryonic lethality. To investigate the role of AGO2 during mouse early development, we generated Ago2-deficient mouse embryonic stem cells (mESCs) and performed a detailed characterization of their differentiation potential. Ago2 disruption caused a global reduction of microRNAs, which resulted in the misregulation of only a limited number of transcripts. We demonstrated, both in vivo and in vitro, that AGO2 is dispensable for the embryonic germ-layer formation. However, Ago2-deficient mESCs showed a specific defect during conversion into extra-embryonic endoderm cells. We proved that this defect is cell autonomous and can be rescued by both a catalytically active and an inactive Ago2, but not by Ago2 deprived of its RNA binding capacity or by Ago1 overexpression. Overall, our results suggest a role for AGO2 in stem cell differentiation.ISSN:2213-671
    corecore