2,522 research outputs found

    Consequences of intensive forest harvesting on the recovery of Swedish lakes from acidification and on critical load exceedances

    Get PDF
    Across much of the northern hemisphere, lakes are at risk of re-acidification due to incomplete recovery from historical acidification and pressures associated with more intensive forest biomass harvesting. Critical load (CL) calculations aimed at estimating the amount of pollutants an ecosystem can receive without suffering adverse consequences are dependent on these factors. Here, we present a modelling study of the potential effects of intensified forest harvesting on re-acidification of a set of 3239 Swedish lakes based on scenarios with varying intensities of forest biomass harvest and acid deposition. There is some evidence that forestry would have caused a certain level of acidification even if deposition remained at 1860 levels. We show that all plausible harvest scenarios delay recovery due to increased rates of base cation removal. Scenario results were used to estimate critical loads for the entire population of lakes in Sweden. The forestry intensity included in critical load calculations is a political decision. After scaling calculations to the national level, it was apparent that a high but plausible forest harvest intensity would lead to an increase in the area of CL exceedances and that even after significant reductions in forest harvest intensity, there would still be areas with CL exceedances. Our results show that forest harvest intensity and regional environmental change must be carefully considered in future CL calculations

    A Radial Velocity Study of Composite-Spectra Hot Subdwarf Stars with the Hobby-Eberly Telescope

    Full text link
    Many hot subdwarf stars show composite spectral energy distributions indicative of cool main sequence companions. Binary population synthesis (BPS) models demonstrate such systems can be formed via Roche lobe overflow or common envelope evolution but disagree on whether the resulting orbital periods will be long (years) or short (days). Few studies have been carried out to assess the orbital parameters of these spectroscopic composite binaries; current observations suggest the periods are long. To help address this problem, we selected fifteen moderately-bright (V~13) hot subdwarfs with F-K dwarf companions and monitored their radial velocities (RVs) from January 2005 to July 2008 using the bench-mounted Medium Resolution Spectrograph on the Hobby-Eberly Telescope (HET). Here we describe the details of our observing, reduction, and analysis techniques and present preliminary results for all targets. By combining the HET data with recent observations from the Mercator telescope, we are able to calculate precise orbital solutions for three systems using more than 6 years of observations. We also present an up-to-date period histogram for all known hot subdwarf binaries, which suggests those with F-K main sequence companions tend to have orbital periods on the order of several years. Such long periods challenge the predictions of conventional BPS models, although a larger sample is needed for a thorough assessment of the models' predictive success. Lastly, one of our targets has an eccentric orbit, implying some composite-spectrum systems might have formerly been hierarchical triple systems, in which the inner binary merged to create the hot subdwarf.Comment: Published in The Astrophysical Journal, Volume 758, Issue 1, article id. 58 (2012). References updated and Equation (5) corrected. 12 pages, 5 figures, 5 table

    Towards Defining Nutrient Conditions Encountered by the Rice Blast Fungus during Host Infection

    Get PDF
    Fungal diseases cause enormous crop losses, but defining the nutrient conditions encountered by the pathogen remains elusive. Here, we generated a mutant strain of the devastating rice pathogen Magnaporthe oryzae impaired for de novo methionine biosynthesis. The resulting methionine-requiring strain grew strongly on synthetic minimal media supplemented with methionine, aspartate or complex mixtures of partially digested proteins, but could not establish disease in rice leaves. Live-cell-imaging showed the mutant could produce normal appressoria and enter host cells but failed to develop, indicating the availability or accessibility of aspartate and methionine is limited in the plant. This is the first report to demonstrate the utility of combining biochemical genetics, plate growth tests and live-cell-imaging to indicate what nutrients might not be readily available to the fungal pathogen in rice host cells

    Sensitivity of Species Habitat-Relationship Model Performance to Factors of Scale

    Get PDF
    Researchers have come to different conclusions about the usefulness of habitat-relationship models for predicting species presence or absence. This difference frequently stems from a failure to recognize the effects of spatial scales at which the models are applied. We examined the effects of model complexity, spatial data resolution, and scale of application on the performance of bird habitat relationship (BHR) models on the Craig Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service\u27s Northern Region. We constructed and tested BHR models for 60 bird species detected on the study areas. The models varied by three levels of complexity (amount of habitat information) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models at two levels of analysis: the site level (a homogeneous area \u3c0.5 ha) and cover-type level (an aggregation of many similar sites of a similar land-cover type), using correspondence between model predictions and species detections to calculate kappa coefficients of agreement. Model performance initially increased as models became more complex until a point was reached where omission errors increased at a rate greater than the rate at which commission errors were decreasing. Heterogeneity of the study areas appeared to influence the effect of model complexity. Changes in model complexity resulted in a greater decrease in commission error than increase in omission error. The effect of spatial data resolution on the performance of BHR models was influenced by the variability of the study area. BHR models performed better at cover-type levels of analysis than at the site level for both study areas. Correct-presence estimates (1 − minus percentage omission error) decreased slightly as number of species detections increased on each study area. Correct-absence estimates (1 − percentage commission error) increased as number of species detections increased on each study area. This suggests that a large number of detections may be necessary to achieve reliable estimates of model accuracy
    • 

    corecore