48 research outputs found

    Notes on N.O.T.E.S.: It is about the Journey, not the Destination.

    Get PDF
    .

    Advanced Technologies and the Future of Medicine and Surgery

    Get PDF
    Technology has become a major driver of the future direction of healthcare and surgery. Likewise, the speed of change has accelerated beyond comprehension, with a number of revolutions occurring during a surgeon's career. Being an agent of change or rapidly adapting to change has become the hallmark of the gifted surgeon. The fundamental challenges to a future surgeon are addressed from a technological viewpoint, with emphasis on the impact upon healthcare

    Robot-Assisted Minimally Invasive Surgery-Surgical Robotics in the Data Age

    Get PDF
    Telesurgical robotics, as a technical solution for robot-assisted minimally invasive surgery (RAMIS), has become the first domain within medicosurgical robotics that achieved a true global clinical adoption. Its relative success (still at a low single-digit percentile total market penetration) roots in the particular human-in-the-loop control, in which the trained surgeon is always kept responsible for the clinical outcome achieved by the robot-actuated invasive tools. Nowadays, this paradigm is challenged by the need for improved surgical performance, traceability, and safety reaching beyond the human capabilities. Partially due to the technical complexity and the financial burden, the adoption of telesurgical robotics has not reached its full potential, by far. Apart from the absolutely market-dominating da Vinci surgical system, there are already 60+ emerging RAMIS robot types, out of which 15 have already achieved some form of regulatory clearance. This article aims to connect the technological advancement with the principles of commercialization, particularly looking at engineering components that are under development and have the potential to bring significant advantages to the clinical practice. Current RAMIS robots often do not exceed the functionalities deriving from their mechatronics, due to the lack of data-driven assistance and smart human–machine collaboration. Computer assistance is gradually gaining more significance within emerging RAMIS systems. Enhanced manipulation capabilities, refined sensors, advanced vision, task-level automation, smart safety features, and data integration mark together the inception of a new era in telesurgical robotics, infiltrated by machine learning (ML) and artificial intelligence (AI) solutions. Observing other domains, it is definite that a key requirement of a robust AI is the good quality data, derived from proper data acquisition and sharing to allow building solutions in real time based on ML. Emerging RAMIS technologies are reviewed both in a historical and a future perspective

    Expert Consensus Recommendations for Robotic Surgery Credentialing

    Get PDF
    Objective: To define criteria for robotic credentialing using expert consensus. Background: A recent review of institutional robotic credentialing policies identified significant variability and determined current policies are largely inadequate to ensure surgeon proficiency and may threaten patient safety. Methods: 28 national robotic surgery experts were invited to participate in a consensus conference. After review of available institutional policies and discussion, the group developed a 91 proposed criteria. Using a modified Delphi process the experts were asked to indicate their agreement with the proposed criteria in three electronic survey rounds after the conference. Criteria that achieved 80% or more in agreement (consensus) in all rounds were included in the final list. Results: All experts agreed that there is a need for standardized robotic surgery credentialing criteria across institutions that promote surgeon proficiency. 49 items reached consensus in the first round, 19 in the second, and 8 in the third for a total of 76 final items. Experts agreed that privileges should be granted based on video review of surgical performance and attainment of clearly defined objective proficiency benchmarks. Parameters for ongoing outcome monitoring were determined and recommendations for technical skills training, proctoring, and performance assessment were defined. Conclusions: Using a systematic approach, detailed credentialing criteria for robotic surgery were defined. Implementation of these criteria uniformly across institutions will promote proficiency of robotic surgeons and has the potential to positively impact patient outcomes

    Demonstrating the effectiveness of the fundamentals of robotic surgery (FRS) curriculum on the RobotiX Mentor Virtual Reality Simulation Platform

    Get PDF
    Fundamentals of robotic surgery (FRS) is a proficiency-based progression curriculum developed by robotic surgery experts from multiple specialty areas to address gaps in existing robotic surgery training curricula. The RobotiX Mentor is a virtual reality training platform for robotic surgery. Our aims were to determine if robotic surgery novices would demonstrate improved technical skills after completing FRS training on the RobotiX Mentor, and to compare the effectiveness of FRS across training platforms. An observational, pre-post design, multi-institutional rater-blinded trial was conducted at two American College of Surgeons Accredited Education Institutes-certified simulation centers. Robotic surgery novices (n = 20) were enrolled and trained to expert-derived benchmarks using FRS on the RobotiX Mentor. Participants’ baseline skill was assessed before (pre-test) and after (post-test) training on an avian tissue model. Tests were video recorded and graded by blinded raters using the Global Evaluative Assessment of Robotic Skills (GEARS) and a 32-criteria psychomotor checklist. Post hoc comparisons were conducted against previously published comparator groups. On paired-samples T tests, participants demonstrated improved performance across all GEARS domains (p < 0.001 to p = 0.01) and for time (p < 0.001) and errors (p = 0.003) as measured by psychometric checklist. By ANOVA, improvement in novices’ skill after FRS training on the RobotiX Mentor was not inferior to improvement reported after FRS training on previously published platforms. Completion of FRS on the RobotiX Mentor resulted in improved robotic surgery skills among novices, proving effectiveness of training. These data provide additional validity evidence for FRS and support use of the RobotiX Mentor for robotic surgery skill acquisition

    Do Basic Psychomotor Skills Transfer Between Different Image-based Procedures?

    Get PDF
    Background - Surgical techniques that draw from multiple types of image-based procedures (IBP) are increasing, such as Natural Orifice Transluminal Endoscopic Surgery, fusing laparoscopy and flexible endoscopy. However, little is known about the relation between psychomotor skills for performing different types of IBP. For example, do basic psychomotor colonoscopy and laparoscopy skills interact? Methods - Following a cross-over study design, 29 naïve endoscopists were trained on the Simbionix GI Mentor and the SimSurgery SEP simulators. Group C (n = 15) commenced with a laparoscopy session, followed by four colonoscopy sessions and a second laparoscopy session. Group L (n = 14) started with a colonoscopy session, followed by four laparoscopy sessions and a second colonoscopy session. Results - No significant differences were found between the performances of group L and group C in their first training sessions on either technique. With additional colonoscopy training, group C outperformed group L in the second laparoscopy training session on the camera navigation task. Conclusions - Overall, training in the basic colonoscopy tasks does not affect performance of basic laparoscopy tasks (and vice versa). However, to limited extent, training of basic psychomotor skills for colonoscopy do appear to contribute to the performance of angled laparoscope navigation tasks. Thus, training and assessment of IBP typespecific skills should focus on each type of tasks independently. Future research should further investigate the influence of psychometric abilities on the performance of IBP and the transfer of skills for physicians who are experienced in one IBP type and would like to become proficient in another type of IBP.Industrial DesignIndustrial Design Engineerin

    Proving the Effectiveness of the Fundamentals of Robotic Surgery (FRS) Skills Curriculum: A Single-blinded, Multispecialty, Multi-institutional Randomized Control Trial

    Get PDF
    Objective: To demonstrate the noninferiority of the fundamentals of robotic surgery (FRS) skills curriculum over current training paradigms and identify an ideal training platform. Summary Background Data: There is currently no validated, uniformly accepted curriculum for training in robotic surgery skills. Methods: Single-blinded parallel-group randomized trial at 12 international American College of Surgeons (ACS) Accredited Education Institutes (AEI). Thirty-three robotic surgery experts and 123 inexperienced surgical trainees were enrolled between April 2015 and November 2016. Benchmarks (proficiency levels) on the 7 FRS Dome tasks were established based on expert performance. Participants were then randomly assigned to 4 training groups: Dome (n = 29), dV-Trainer (n = 30), and DVSS (n = 32) that trained to benchmarks and control (n = 32) that trained using locally available robotic skills curricula. The primary outcome was participant performance after training based on task errors and duration on 5 basic robotic tasks (knot tying, continuous suturing, cutting, dissection, and vessel coagulation) using an avian tissue model (transfer-test). Secondary outcomes included cognitive test scores, GEARS ratings, and robot familiarity checklist scores. Results: All groups demonstrated significant performance improvement after skills training (P < 0.01). Participating residents and fellows performed tasks faster (DOME and DVSS groups) and with fewer errors than controls (DOME group; P < 0.01). Inter-rater reliability was high for the checklist scores (0.82–0.97) but moderate for GEARS ratings (0.40–0.67). Conclusions: We provide evidence of effectiveness for the FRS curriculum by demonstrating better performance of those trained following FRS compared with controls on a transfer test. We therefore argue for its implementation across training programs before surgeons apply these skills clinically
    corecore