80,073 research outputs found

    An Absorption Band of Formaldoxime at lambda9572

    Get PDF
    The third harmonic of the O [Single Bond] H band in formaldoxime vapor has been found to lie at lambda9572 (10,444.1 cm^—1) and under high dispersion has been resolved and found to resemble a parallel band of a symmetric rotator. Owing to the weakness of the lines near the center of the band a definitely unique rotational analysis could not be made but the harmonic mean of the two larger moments of inertia appears to lie between the limits 73.3 and 76.6×10^—40 g cm^2. The hydroxyl hydrogen does not rotate freely and indeed its torsional oscillation appears not to have a very low frequency. It is not possible to locate this hydrogen uniquely until other parameters of the molecule have been determined by electron diffraction. The possible effect of resonance on the O [Single Bond] H frequency is discussed

    Structure of the O[Single Bond]H Bands in the Vapors of Halogen Substituted Alcohols

    Get PDF
    In the study of the infra-red absorption of organic substances containing hydroxyl groups it has been found that the O-H bands sometimes occur as multiplets even though only one such group is present per molecule. This has been observed both in the spectra of vapors (1) and of solutions (2,3) though in the latter case less structure is resolvable in some instances. The phenomenon has been explained by saying that the hydroxyl hydrogen is not free to rotate around the C-O bond, but may be found in more than one position of potential minimum in which the O-H frequency may be somewhat different (1,4). Though this explanation appears plausible it has seemed desirable to investigate the matter further by a quantitative study of some relatively simple substances in the vapor phase. Consequently a series of halogen substituted alcohols has been investigated with interesting results

    The N[Single Bond]H Harmonic Bands of Pyrrole at lambda9900, and the Structure of the Pyrrole Molecule

    Get PDF
    In their study of the infra-red absorption of organic substances in carbon tetrachloride solution Wulf and Liddell (1) found that the strong second harmonic N-H band of pyrrole is accompanied by a weak satellite which lies approximately 50 cm^-1 to the long wave side and has roughly one-twentieth the intensity of the main band. The main band has been attributed by Pauling (2) to a planar pyrrole molecule and the weak satellite to a second molecular species in which the imino hydrogen lies out of the plane of the other atoms

    The method of the weakly conjugate operator: Extensions and applications to operators on graphs and groups

    Full text link
    In this review we present some recent extensions of the method of the weakly conjugate operator. We illustrate these developments through examples of operators on graphs and groups.Comment: 11 page

    Spectral analysis for adjacency operators on graphs

    Full text link
    We put into evidence graphs with adjacency operator whose singular subspace is prescribed by the kernel of an auxiliary operator. In particular, for a family of graphs called admissible, the singular continuous spectrum is absent and there is at most an eigenvalue located at the origin. Among other examples, the one-dimensional XY model of solid-state physics is covered. The proofs rely on commutators methods.Comment: 16 pages, 9 figure

    Can the X(3872) be a 1^{++} four-quark state?

    Get PDF
    We use QCD spectral sum rules to test the nature of the meson X(3872), assumed to be an exotic four-quark (c\bar{c}q\bar{q}) state with J^{PC}=1^{++}. For definiteness, we work with the current proposed recently by Maiani et al [1], at leading order in \alpha_s, consider the contributions of higher dimension condensates and keep terms which are linear in the light quark mass m_q. We find M_X=(3925+- 127) MeV which is compatible, within the errors, with he experimental candidate X(3872), while the SU(3) breaking-terms lead to an unusual mass-splitting M_{X^{s}}-M_X=- (61+-30) MeV. The mass-difference between the neutral states due to isospin violation of about (2.6-3.9) MeV is much smaller than the value (8+-3) MeV proposed in [1]. For the b-quark, we predict M_{X_b}= (10144+-106) MeV for the X_b(b\bar{b}q \bar{q}), which is much below the {\bar B}B* threshold in contrast to the {\bar B}B* molecule prediction [2], and for the X_b^s(b\bar{b}s \bar{s}), a mass-splitting M_{X^s_{b}}-M_{X_b}=-(121+-182) MeV. Our analysis also indicates that the mass-splitting between the ground state and the radial excitation of about (225~250) MeV is much smaller than in the case of ordinary mesons and is (within the errors) flavour-independent. We also extract the decay constants, analogous to f_\pi, of such mesons, which are useful for further studies of their leptonic and hadronic decay widths. The uncertainties of our estimates are mainly due to the ones from the c and b quark masses.Comment: 16 pages, 10 figures. Version to appear in Phys. Rev.
    • 

    corecore