3 research outputs found

    Towards a Comprehensive Model for Characterising and Assessing Thermoelectric Modules by Impedance Spectroscopy

    No full text
    Thermoelectric devices have potential energy conversion applications ranging from space exploration through to mass-market products. Standardised, accurate and repeatable high-throughput measurement of their properties is a key enabling technology. Impedance spectroscopy has shown promise as a tool to parametrically characterise thermoelectric modules with one simple measurement. However, previously published models which attempt to characterise fundamental properties of a thermoelectric module have been found to rely on heavily simplified assumptions, leaving its validity in question. In this paper a new comprehensive impedance model is mathematically developed. The new model integrates all relevant transport phenomena: thermal convection, radiation, and spreading-constriction at junction interfaces. Additionally, non-adiabatic internal surface boundary conditions are introduced for the first time. These phenomena were found to significantly alter the low and high frequency response of Nyquist spectra, showing their necessity for accurate characterisation. To validate the model, impedance spectra of a commercial thermoelectric module was experimentally measured using a new and parametrically fitted. Technique precision is investigated using a Monte-Carlo residual resampling approach. A complete characterisation of all key thermoelectric properties as a function of temperature is validated with material property data provided by the module manufacturer. Additionally, by firstly characterising the module in vacuum, the ability to characterise a heat transfer coefficient for free and forced convection is demonstrated. The model developed in this study is therefore a critical enabler to potentially allow impedance spectroscopy to characterise and monitor manufacturing and operational defects in practical thermoelectric modules across multiple sectors, as well as promote new sensor technologies

    Spark Plasma Sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Full text link
    The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi0.5Sb1.5Te3 materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B4C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B4C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B4C. The KIC fracture toughness of these compositions was measured as 0.80 MPa m1/2 by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification

    Sintering trials of analogues of americium oxides for radioisotope power systems

    Full text link
    European Space Agency radioisotope power systems will use americium oxide as the heat source in pellet or disc form. The oxide form is yet to be decided. Sintering trials with CeO2 and Nd2O3 as analogues for AmO2 and Am2O3 were conducted. Spark plasma sintering (SPS) and cold-press-and-sinter methods were compared. Different sintering parameters and particle characteristics were investigated with commercial and synthesised powders. The synthesised powders contained lath-shaped particles, and batches with different particle sizes and specific surface areas were made and sintered. This is the first study in the public literature to report the sintering of lath-shaped CeO2. The targeted density range of 85–90% was met using both techniques. No ball-milling was required. Cold-pressing-and-sintering CeO2 produced intact discs. Large cracking was prevalent in the SPS discs. Some powders pressed more successfully than others. Powder morphology had a significant effect on the result but it was not possible to fully quantify the effects in this study. The cold-pressed-and-sintered CeO2 discs had comparable Vickers hardness values to a nuclear ceramic (UO2). The hardness values were greater than the spark plasma sintered CeO2 sample. Efforts to SPS near-net shaped pellets using CeO2 and Nd2O3 are reported. A follow on investigation was conducted to assess how the 85–90% T.D. target could be achieved. The aspect ratio impacts the sintering parameters and behaviour. The Vickers hardness of Nd2O3 is reported for the first time and compared to the results of sintered CeO2
    corecore