5,015 research outputs found
Time-Resolved Ultrafast Transient Polarization Spectroscopy to Investigate Nonlinear Processes and Dynamics in Electronically Excited Molecules on the Femtosecond Time Scale
We report a novel experimental technique to investigate ultrafast dynamics in
photoexcited molecules by probing the third-order nonlinear optical
susceptibility. A non-colinear 3-pulse scheme is developed to probe the
ultrafast dynamics of excited electronic states using the optical Kerr effect
by time-resolved polarization spectroscopy. Optical heterodyne and optical
homodyne detection are demonstrated to measure the third-order nonlinear
optical response for the S1 excited state of liquid nitrobenzene, which is
populated by 2-photon absorption of a 780 nm 35 fs excitation pulse.Comment: 12 pages, 4 figures. Changes from previous version: added panel
labels to figures 3-
Activation of PKR by Bunyamwera virus is independent of the viral interferon antagonist NSs
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems
Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties
The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups
Individual descriptive record system
An electronic individual descriptive record system for storing the individual\u27s identification and descriptive data on a programmable electronic identification and data storage module carried with the individual so that the individual\u27s identification, the individual\u27s descriptive data and the individual itself become one. The system includes an implantable programmable electronic identification and data storage module carried by the individual, and a reading and recording device which communicates with the electronic identification and data storage module
Ultrafast Dynamics of Excited Electronic States in Nitrobenzene Measured by Ultrafast Transient Polarization Spectroscopy.
We investigate ultrafast dynamics of the lowest singlet excited electronic state in liquid nitrobenzene using ultrafast transient polarization spectroscopy, extending the well-known technique of optical Kerr effect spectroscopy to excited electronic states. The third-order nonlinear response of the excited molecular ensemble is measured using a pair of femtosecond pulses following a third femtosecond pulse that populates the S1 excited state. By measuring this response, which is highly sensitive to details of the excited state character and structure, as a function of time delays between the three pulses involved, we extract the dephasing time of the wave packet on the excited state. The dephasing time, measured as a function of time delay after pump excitation, shows oscillations indicating oscillatory wave packet dynamics on the excited state. From the experimental measurements and supporting theoretical calculations, we deduce that the wave packet completely leaves the S1 state potential energy surface after three traversals of the intersystem crossing between the singlet S1 and triplet T2 states
Elective affinities of the Protestant ethic : Weber and the chemistry of capitalism
Peer reviewedPostprin
- âŠ