697 research outputs found

    The Good, The Bad, The Ugly: Using Naturally Occurring Terata to Distinguish the Possible from the Impossible in Orchid Floral Evolution

    Get PDF
    We interpret extensive field observations of terata in the context of recent insights into monocot phylogeny and evolutionary-developmental genetics to explore the evolution of the orchid flower. Our arguably typological classification of floral terata focuses on natural occurrences of three contrasting modes of peloria (restoration of actinomorphy in a formerly zygomorphic perianth) and three contrasting modes of pseudopeloria (lessening of the degree of zygomorphy shown by the evolutionarily preceding perianth). Dynamic evolutionary transitions in floral morphology are assigned to recently revised concepts of heterotopy (including homeosis: evolutionary transitions in position of expression) and heterochrony (evolutionary transitions in timing of expression), seeking patterns that delimit developmental constraints and allow inferences regarding underlying genetic controls. Lateral heterotopy, occurring within the whorl of three petals (including the labellum) or within the adjacent whorl of three sepals, is more frequent than acropetal heterotopy, and full basipetal heterotopy does not occur. Pseudopeloria is more likely than peloria to generate a radically altered yet functional perianth but is also more likely to cause acropetal modification of the fused filaments and style that constitute the characteristic gynostemium of orchids. We infer that at least one gene or gene complex controls stylestamen fusion, which requires the preadaptation of strongly developed epigyny, and another determines both stamen suppression and labellum formation adaxially. Our earlier hypothesis implicating genes of the TCP family has recently been challenged by empirical evidence of complex interactions between several MADS-box genes. Many transitions are highly iterative, and some are reversible (atavistic). Once heritability has been demonstrated, the most effective criteria for determining the most appropriate taxonomic status of a novel morph are the profundity of the phenotypic shift that it represents, the number and uniformity of the resulting populations, and whether the novel morph subsequently diversified to generate further morphs that retain the innovative features. Although morphological transitions attributable to heterochrony may be a more common driver of speciation than those attributable to heterotopy, we demonstrate that arguably all of the modes of instantaneous floral transition described in this paper have the ability to generate prospecies

    Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Get PDF
    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. America

    Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Get PDF
    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land thunderstorms, 530 for ocean ESCs, 390 for ocean thunderstorms, and 330 for land ESCs

    Flash Detection Efficiencies of Long Range Lightning Detection Networks During GRIP

    Get PDF
    We flew our Lightning Instrument Package (LIP) on the NASA Global Hawk as a part of the Genesis and Rapid Intensification Processes (GRIP) field program. The GRIP program was a NASA Earth science field experiment during the months of August and September, 2010. During the program, the LIP detected lighting from 48 of the 213 of the storms overflown by the Global Hawk. The time and location of tagged LIP flashes can be used as a "ground truth" dataset for checking the detection efficiency of the various long or extended range ground-based lightning detection systems available during the GRIP program. The systems analyzed included Vaisala Long Range (LR), Vaisala GLD360, the World Wide Lightning Location Network (WWLLN), and the Earth Networks Total Lightning Network (ENTLN). The long term goal of our research is to help understand the advantages and limitations of these systems so that we can utilize them for both proxy data applications and cross sensor validation of the GOES-R Geostationary Lightning Mapper (GLM) sensor when it is launched in the 2015 timeframe

    Systematic reappraisal of marsh-orchids native to Scotland

    Get PDF
    © The Author(s), 2023.This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Summary: The intensively studied Eurasian orchid genus Dactylorhiza has become a model system for exploring allopolyploid evolution, yet determining the optimal circumscriptions of, and most appropriate ranks for, its constituent taxa remain highly controversial topics. Here, novel allozyme data and detailed morphometric data for 16 Scottish marsh-orchid populations are interpreted in the context of recent DNA sequencing studies. Despite being derived from the same pair of parental species, the two allopolyploid species that currently occur in Scotland can reliably be distinguished using allozymes, haplotypes, ribotypes or sequences of nuclear genes. A modest range of diverse morphological characters are shown to distinguish the two molecularly-circumscribed species, but they have in the past been obscured by equivalent levels of infraspecific variation in characters rooted in anthocyanin pigments; these characters are better employed for distinguishing infraspecific taxa. Dactylorhiza francis-drucei (formerly D. traunsteinerioides) is confirmed as being distinct from the continental D. traunsteineri/lapponica, probably originating through allopatric isolation once the continental lineage reached Britain. All Scottish populations are attributed to the comparatively small-flowered, anthocyanin-rich subsp. francis-drucei, which includes as a variety the former D. 'ebudensis'; the less anthocyanin-rich subsp. traunsteinerioides is confined to Ireland, North Wales and northern England. In contrast with D. francis-drucei, only a minority of Scottish populations of D. purpurella are attributed to the anthocyanin-rich race, var. cambrensis. This species most likely originated through an allopolyploidy event that occurred comparatively recently within the British Isles, as it contains allozyme alleles distinctive of British rather than continental D. incarnata (its diploid pollen-parent). In contrast, the rare Scottish population of D. incarnata subsp. cruenta shares with its Irish counterparts a continental genotype, and is most likely a recent arrival in Scotland through long-distance dispersal. Among all European allotetraploid dactylorchids, D. purpurella is the species that most closely resembles D. incarnata, both molecularly and morphologically.Peer reviewe

    Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Get PDF
    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. This excellent agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 0.7 kA (ocean) and 1.1 kA (land) from lightning-producing storms, and 0.22 kA (ocean) and 0.04 (land) from electrified shower clouds, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Breaking the results down into mean storm counts reveals 1100 for land storms with lightning, 530 for ocean storms without lightning, 390 for ocean storms with lightning, and 330 for land storms without lightning

    Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rate, and Current Statistics

    Get PDF
    We present total conduction (Wilson) currents for more than 1000 high-altitude aircraft overflights of electrified clouds acquired over nearly two decades. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV/m to 16. kV/m, with mean (median) of 0.9 kV/m (0.29 kV/m). Total conductivity at flight altitude ranged from 0.6 pS/m to 3.6 pS/m, with mean and median of 2.2 pS/m. Peak current densities ranged from -2.0 nA m(exp -2) to 33.0 nA m(exp -2) with mean (median) of 1.9 nA m(exp -2) (0.6 nA m(exp -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.7 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.41 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate

    Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rates, and Electric Current Statistics

    Get PDF
    We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate

    Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii

    Get PDF
    The KNOTTED1-like homeobox (KNOX) genes are best known for maintaining a pluripotent stem-cell population in the shoot apical meristem that underlies indeterminate vegetative growth, allowing plants to adapt their development to suit the prevailing environmental conditions. More recently, the function of the KNOXgene family has been expanded to include additional roles in lateral organ development such as complex leaf morphogenesis, which has come to dominate the KNOX literature. Despite several reports implicating KNOX genes in the development of carpels and floral elaborations such as petal spurs, few authors have investigated the role of KNOX genes in flower development. Evidence is presented here of a flower-specific KNOX function in the development of the elaborate flowers of the orchid Dactylorhiza fuchsii, which have a three-lobed labellum petal with a prominent spur. Using degenerate PCR, four Class I KNOX genes (DfKN1–4) have been isolated, one from each of the four major Class I KNOX subclades and by reverse transcription PCR (RT-PCR), it is demonstrated that DfKNOXtranscripts are detectable in developing floral organs such as the spur-bearing labellum and inferior ovary. Although constitutive expression of the DfKN2 transcript in tobacco produces a wide range of floral abnormalities, including serrated petal margins, extra petal tissue, and fused organs, none of the vegetative phenotypes typical of constitutive KNOX expression were produced. These data are highly suggestive of a role for KNOX expression in floral development that may be especially important in taxa with elaborate flowers
    corecore