102 research outputs found

    Baseline elevation and reduction in cardiac electrical instability assessed by quantitative T-wave alternans in patients with drug-resistant epilepsy treated with vagus nerve stimulation in the AspireSR E-36 trial

    Get PDF
    Objective: Reports of cardiac arrhythmias and cardiac pathology at postmortem examination of patients with epilepsy suggest a possible cardiac component of risk for sudden unexpected death in epilepsy (SUDEP). T-wave alternans (TWA) is an established marker of cardiac electrical instability and risk for sudden death in patients with cardiovascular disease. We determined the TWA level before vagus nerve stimulation (VNS) system implantation and subsequently the effect of VNS on TWA in patients with drug-resistant epilepsy. Methods: Patients (n = 28) from the Seizure Detection and Automatic Magnet Mode Performance Study (E-36), a clinical trial of the AspireSR (R) VNS Therapy System (R) (NCT01325623), were monitored with ambulatory electrocardiograms (ECGs) similar to 2 weeks before de novo VNS system implantation and following 2- to 4-week VNS titration during a protocol-specified 3- to 5-day epilepsy monitoring unit stay with concurrent EEG/ECG recordings. The TWA level was assessed interictally by the Modified Moving Average (MMA) method. Results: At preimplantation baseline, TWA was elevated above the 47-mu V abnormality cutpoint in 23 (82%) patients with drug-resistant epilepsy. In 16 (70%) patients, TWA level was reduced during VNS treatment to <47 mu V, thereby converting positive TWA test results to negative. Peak TWA level in all 28 patients improved (group mean, 43%, from 72 +/- 4.3 to 41 +/- 2.3 mu V; p < 0.0001). Vagus nerve stimulation was not associated with reduced heart rate (77 +/- 1.4 to 75 +/- 1.4 beats/min; p = 0.18). Heart rate variability was unchanged. Significance: These findings suggest significant interictal cardiac electrical instability in this population of patients with drug-resistant epilepsy and suggest that VNS may be a novel approach to reducing risk

    Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators

    Get PDF
    Epidemiologic studies have demonstrated a consistent link between sudden cardiac deaths and particulate air pollution. We used implanted cardioverter defibrillator (ICD) records of ventricular tachyarrhythmias to assess the role of air pollution as a trigger of these potentially life-threatening events. The study cohort consisted of 203 cardiac patients with ICD devices in the Boston metropolitan area who were followed for an average of 3.1 years between 1995 and 2002. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured on almost all days, and black carbon, sulfate, and particle number on a subset of days. Date, time, and intracardiac electrograms of ICD-detected arrhythmias were downloaded at the patients’ regular follow-up visits (about every 3 months). Ventricular tachyarrhythmias were identified by electrophysiologist review. Risk of ventricular arrhythmias associated with air pollution was estimated with logistic regression, adjusting for season, temperature, relative humidity, day of the week, patient, and a recent prior arrhythmia. We found increased risks of ventricular arrhythmias associated with 2-day mean exposure for all air pollutants considered, although these associations were not statistically significant. We found statistically significant associations between air pollution and ventricular arrhythmias for episodes within 3 days of a previous arrhythmia. The associations of ventricular tachyarrhythmias with fine particle mass, carbon monoxide, nitrogen dioxide, and black carbon suggest a link with motor vehicle pollutants. The associations with sulfate suggest a link with stationary fossil fuel combustion sources

    Training less-experienced faculty improves reliability of skills assessment in cardiac surgery

    Get PDF
    OBJECTIVE: Previous work has demonstrated high inter-rater reliability in the objective assessment of simulated anastomoses among experienced educators. We evaluated the inter-rater reliability of less-experienced educators and the impact of focused training with a video-embedded coronary anastomosis assessment tool. METHODS: Nine less-experienced cardiothoracic surgery faculty members from different institutions evaluated 2 videos of simulated coronary anastomoses (1 by a medical student and 1 by a resident) at the Thoracic Surgery Directors Association Boot Camp. They then underwent a 30-minute training session using an assessment tool with embedded videos to anchor rating scores for 10 components of coronary artery anastomosis. Afterward, they evaluated 2 videos of a different student and resident performing the task. Components were scored on a 1 to 5 Likert scale, yielding an average composite score. Inter-rater reliabilities of component and composite scores were assessed using intraclass correlation coefficients (ICCs) and overall pass/fail ratings with kappa. RESULTS: All components of the assessment tool exhibited improvement in reliability, with 4 (bite, needle holder use, needle angles, and hand mechanics) improving the most from poor (ICC range, 0.09-0.48) to strong (ICC range, 0.80-0.90) agreement. After training, inter-rater reliabilities for composite scores improved from moderate (ICC, 0.76) to strong (ICC, 0.90) agreement, and for overall pass/fail ratings, from poor (kappa = 0.20) to moderate (kappa = 0.78) agreement. CONCLUSIONS: Focused, video-based anchor training facilitates greater inter-rater reliability in the objective assessment of simulated coronary anastomoses. Among raters with less teaching experience, such training may be needed before objective evaluation of technical skills

    Microvolt T-Wave Alternans Physiological Basis, Methods of Measurement, and Clinical Utility—Consensus Guideline by International Society for Holter and Noninvasive Electrocardiology

    Get PDF
    This consensus guideline was prepared on behalf of the International Society for Holter and Noninvasive Electrocardiology and is cosponsored by the Japanese Circulation Society, the Computers in Cardiology Working Group on e-Cardiology of the European Society of Cardiology, and the European Cardiac Arrhythmia Society. It discusses the electrocardiographic phenomenon of T-wave alternans (TWA) (i.e., a beat-to-beat alternation in the morphology and amplitude of the ST- segment or T-wave). This statement focuses on its physiological basis and measurement technologies and its clinical utility in stratifying risk for life-threatening ventricular arrhythmias. Signal processing techniques including the frequency-domain Spectral Method and the time-domain Modified Moving Average method have demonstrated the utility of TWA in arrhythmia risk stratification in prospective studies in >12,000 patients. The majority of exercise-based studies using both methods have reported high relative risks for cardiovascular mortality and for sudden cardiac death in patients with preserved as well as depressed left ventricular ejection fraction. Studies with ambulatory electrocardiogram-based TWA analysis with Modified Moving Average method have yielded significant predictive capacity. However, negative studies with the Spectral Method have also appeared, including 2 interventional studies in patients with implantable defibrillators. Meta-analyses have been performed to gain insights into this issue. Frontiers of TWA research include use in arrhythmia risk stratification of individuals with preserved ejection fraction, improvements in predictivity with quantitative analysis, and utility in guiding medical as well as device-based therapy. Overall, although TWA appears to be a useful marker of risk for arrhythmic and cardiovascular death, there is as yet no definitive evidence that it can guide therapy

    Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms

    Get PDF
    BACKGROUND Heterogeneity of depolarization and repolarization underlies the development of lethal arrhythmias. OBJECTIVE We investigated whether quantification of spatial depolarization and repolarization heterogeneity identifies individuals at risk for sudden cardiac death (SCD). METHODS Spatial R-, J-, and T-wave heterogeneity (RWH, JWH, and TWH, respectively) was analyzed using automated second central moment analysis of standard digital 12-lead electrocardiograms in 5618 adults (2588, 46% men; mean +/- SEM age 50.9 +/- 0.2 years), who took part in the epidemiological Health 2000 Survey as representative of the entire Finnish adult population. RESULTS During the follow-up period of 7.7 +/- 0.2 years, a total of 72 SCDs occurred (1.3%), with an average yearly incidence rate of 0.17% per year. Increased RWH, JWH, and TWH in left precordial leads (V-4-V-6) were univariately associated with SCD (P = 102 mu V) was associated with a 1.7-fold adjusted relative risk for SCD (95% confidence interval [CI] 1.0-2.9; P = .048) and increased JWH (>= 123 mu V) with a 2.0-fold adjusted relative risk for SCD (95% CI 1.2-3.3; P = .006). When both TWH and JWH were above the threshold, the adjusted relative risk for SCD was 2.9-fold (95% CI 1.5-5.7; P = .002). When RWH (>= 470 mu V), JWH, and TWH were all above the threshold, the adjusted relative risk for SCD was 3.2-fold (95% CI 1.4-7.1; P = .009). CONCLUSION Second central moment analysis of standard resting 12-lead electrocardiographic morphology provides an ultrarapid means for the automated measurement of spatial RWH, JWH, and TWH, enabling analysis of high subject volumes and screening for SCD risk in the general population.Peer reviewe
    corecore