5,517 research outputs found

    Positron Tunnelling through the Coulomb Barrier of Superheavy Nuclei

    Full text link
    We study beams of medium-energy electrons and positrons which obey the Dirac equation and scatter from nuclei with Z>100.Z > 100. At small distances the potential is modelled to be that of a charged sphere. A large peak is found in the probability of positron penetration to the origin for Z≈184.Z \approx 184. This may be understood as an example of Klein tunnelling through the Coulomb barrier: it is the analogue of the Klein Paradox for the Coulomb potential.Comment: 3 figures, to be published in Physics Letters

    Using Ontology Fingerprints to evaluate genome-wide association study results

    Get PDF
    We describe an approach to characterize genes or phenotypes via ontology fingerprints which are composed of Gene Ontology (GO) terms overrepresented among those PubMed abstracts linked to the genes or phenotypes. We then quantify the biological relevance between genes and phenotypes by comparing their ontology fingerprints to calculate a similarity score. We validated this approach by correctly identifying genes belong to their biological pathways with high accuracy, and applied this approach to evaluate GWA study by ranking genes associated with the lipid concentrations in plasma as well as to prioritize genes within linkage disequilibrium (LD) block. We found that the genes with highest scores were: ABCA1, LPL, and CETP for HDL; LDLR, APOE and APOB for LDL; and LPL, APOA1 and APOB for triglyceride. In addition, we identified some top ranked genes linking to lipid metabolism from the literature even in cases where such knowledge was not reflected in current annotation of these genes. These results demonstrate that ontology fingerprints can be used effectively to prioritize genes from GWA studies for experimental validation

    Exocytosis from Large Dense Cored Vesicles as a Mechanism for Neuropeptide Release in the Peripheral and Central Nervous System

    Get PDF
    Nerve terminals often contain morphological-distinct populations of large (75-110 nm) and small (45-55 nm) vesicles. The small vesicles are speculated to account for release of transmitter quanta as they accumulate at presynaptic membranes. Large vesicles can co-store neuropeptides and classical transmitters but their function in neurotransmission has been disputed because they do not appear to accumulate at chemical synapses. However, there is now evidence that the large vesicles play a role in neuro-transmission or its modulation even though they may not be eminently involved in synaptic release. Thus, exocytosis occurs along the synapse-lacking membranes of peripheral noradrenergic varicosities. Large vesicles may continue to function in peptide release even after the classical transmitter has been depleted as demonstrated in the pig vas deferens. Three days of reserpine administration causes a parallel loss of noradrenaline and small vesicle contents but does not decrease enkephalin-like immunoreactivity or large vesicle electron density. In the central nervous system of the rat, where substance P and enkephalin have been localized to large vesicles, exocytosis occurs from several types of terminals. The large vesicles appear preferentially to release their contents at morphologically non-specialized sites even when characteristic synapses are present. Thus different mechanisms of transmitter and neuropeptide release may coexist. The nonsynaptic discharge may allow substances to diffuse over a wider distance whereas release into a synaptic cleft could restrict receptor interaction

    Paint gun incorporating a laser device

    Get PDF
    A spray gun for applying a liquid spray coating, such as paint, to a surface incorporates a light source and detection system for analyzing the position of the spray gun relative to a worksurface in order to optimize application of the coating to the surface. The light source is preferably in the form of a laser which emits a beam of light toward the worksurface. The laser is interconnected with the housing of the spray gun in a location over the spray gun handle so as not to effect the center of gravity of the spray gun. Optical sensors are mounted to the spray gun housing for receiving light reflected from the work-surface, and the sensors are interconnected with a processor for providing the operator with a real time visual indication as to compliance with predetermined paint application criteria. In addition, information can be stored to memory and downloaded for subsequent analysis

    Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    Get PDF
    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life
    • …
    corecore