136 research outputs found

    Dual Supermassive Black Hole Candidates in the AGN and Galaxy Evolution Survey

    Full text link
    Dual supermassive black holes (SMBHs) with kiloparsec scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z<0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z=0.25 to z=0.7 by a factor of ~6 (from 2/70 to 16/91, or 2.9% to 18%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ~3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9% to 29%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.Comment: 10 pages, 8 figures, accepted for publication in Ap

    PRIMUS: The Effect of Physical Scale on the Luminosity-Dependence of Galaxy Clustering via Cross-Correlations

    Full text link
    We report small-scale clustering measurements from the PRIMUS spectroscopic redshift survey as a function of color and luminosity. We measure the real-space cross-correlations between 62,106 primary galaxies with PRIMUS redshifts and a tracer population of 545,000 photometric galaxies over redshifts from z=0.2 to z=1. We separately fit a power-law model in redshift and luminosity to each of three independent color-selected samples of galaxies. We report clustering amplitudes at fiducial values of z=0.5 and L=1.5 L*. The clustering of the red galaxies is ~3 times as strong as that of the blue galaxies and ~1.5 as strong as that of the green galaxies. We also find that the luminosity dependence of the clustering is strongly dependent on physical scale, with greater luminosity dependence being found between r=0.0625 Mpc/h and r=0.25 Mpc/h, compared to the r=0.5 Mpc/h to r=2 Mpc/h range. Moreover, over a range of two orders of magnitude in luminosity, a single power-law fit to the luminosity dependence is not sufficient to explain the increase in clustering at both the bright and faint ends at the smaller scales. We argue that luminosity-dependent clustering at small scales is a necessary component of galaxy-halo occupation models for blue, star-forming galaxies as well as for red, quenched galaxies.Comment: 13 pages, 6 figures, 5 tables; published in ApJ (revised to match published version

    PRIMUS: An observationally motivated model to connect the evolution of the AGN and galaxy populations out to z~1

    Full text link
    We present an observationally motivated model to connect the AGN and galaxy populations at 0.2<z<1.0 and predict the AGN X-ray luminosity function (XLF). We start with measurements of the stellar mass function of galaxies (from the Prism Multi-object Survey) and populate galaxies with AGNs using models for the probability of a galaxy hosting an AGN as a function of specific accretion rate. Our model is based on measurements indicating that the specific accretion rate distribution is a universal function across a wide range of host stellar mass with slope gamma_1 = -0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope gamma_2 = -2.1 +0.3 -0.5, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies (M* ~ 10^{10-11} M_sun) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion.Comment: 11 pages, 5 figures, emulateapj format, updated to match version accepted for publication in Ap

    Dark Matter Halo Models of Stellar Mass-Dependent Galaxy Clustering in PRIMUS+DEEP2 at 0.2<z<1.2

    Full text link
    We utilize Λ\LambdaCDM halo occupation models of galaxy clustering to investigate the evolving stellar mass dependent clustering of galaxies in the PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past eight billion years of cosmic time, between 0.2<z<1.20.2<z<1.2. These clustering measurements provide new constraints on the connections between dark matter halo properties and galaxy properties in the context of the evolving large-scale structure of the universe. Using both an analytic model and a set of mock galaxy catalogs, we find a strong correlation between central galaxy stellar mass and dark matter halo mass over the range Mhalo∼1011M_\mathrm{halo}\sim10^{11}-1013 h−1M⊙10^{13}~h^{-1}M_\odot, approximately consistent with previous observations and theoretical predictions. However, the stellar-to-halo mass relation (SHMR) and the mass scale where star formation efficiency reaches a maximum appear to evolve more strongly than predicted by other models, including models based primarily on abundance-matching constraints. We find that the fraction of satellite galaxies in haloes of a given mass decreases significantly from z∼0.5z\sim0.5 to z∼0.9z\sim0.9, partly due to the fact that haloes at fixed mass are rarer at higher redshift and have lower abundances. We also find that the M1/MminM_1/M_\mathrm{min} ratio, a model parameter that quantifies the critical mass above which haloes host at least one satellite, decreases from ≈20\approx20 at z∼0z\sim0 to ≈13\approx13 at z∼0.9z\sim0.9. Considering the evolution of the subhalo mass function vis-\`{a}-vis satellite abundances, this trend has implications for relations between satellite galaxies and halo substructures and for intracluster mass, which we argue has grown due to stripped and disrupted satellites between z∼0.9z\sim0.9 and z∼0.5z\sim0.5.Comment: 17 pages, 9 figures and 4 tables; Astrophysical Journal, publishe
    • …
    corecore