4,832 research outputs found

    Magnetorotational Instability in Liquid Metal Couette Flow

    Full text link
    Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium alpha-omega dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus (Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The later takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Due to the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of wavenumbers and further to observe the transition to the turbulent state.Comment: 12 pages, 22 figures, 1 table. To appear in the Astrophysical Journa

    El Niño and the delayed action oscillator

    Get PDF
    We study the dynamics of the El Niño phenomenon using the mathematical model of delayedaction oscillator (DAO). Topics such as the influence of the annual cycle, global warming, stochastic influences due to weather conditions and even off-equatorial heat-sinks can all be discussed using only modest analytical and numerical resources. Thus the DAO allows for a pedagogical introduction to the science of El Niño and La Niña while at the same time avoiding the need for large-scale computing resources normally associated with much more sophisticated coupled atmosphere-ocean general circulation models. It is an approach which is ideally suited for student projects both at high school and undergraduate level

    In Memoriam: Daniel J. Meltzer

    Get PDF
    Sedan Ă„r 2006 har den syntetiskt framstĂ€llda drogen spice existerat i Sverige, men först Ă„r 2008 blev drogen populĂ€r och tidningar började rikta uppmĂ€rksamhet mot den. Genom att drogen kan byta skepnad i uppbyggnaden kan den förbli laglig, dĂ€rför kan egentligen namnet “spice” inte betraktas som ett enhetligt begrepp. VĂ„rt syfte med denna studie blev att granska hur drogen spice beskrivs i tidningar och forskning. Även hur drogen betraktas gĂ€llande psykosociala och medicinska avseenden. Detta i förhĂ„llande till socialkonstruktivistiskt perspektiv. Den metod som vi valde att anvĂ€nda oss av i studien var kvantitativ innehĂ„llsanalys. Genom analys av 80 stycken svenska tidningsartiklar hĂ€mtade ur databasen mediearkivet, samt vetenskapliga artiklar och litteratur har vi besvarat vĂ„ra frĂ„gestĂ€llningar. De resultat vi fick frĂ„n analyser visade pĂ„ att tidningar kan vara av betydande roll för ungdomars attityder. Tidningar kan utföra bland annat skrĂ€mselpropaganda för att upplysa och förhindra brukandet av spice, dessvĂ€rre visar resultatet en motsatt effekt. Forskning visar att bruk av spice kan pĂ„verka relationer och arbete negativt. Dessutom Ă€r nĂ„gra bieffekter av spice bröstsmĂ€rtor, vanförestĂ€llningar, sjĂ€lvmordstankar och hjĂ€rtstopp

    On the Phenomenology of Hydrodynamic Shear Turbulence

    Full text link
    The question of a purely hydrodynamic origin of turbulence in accretion disks is reexamined, on the basis of a large body of experimental and numerical evidence on various subcritical (i.e., linearly stable) hydrodynamic flows. One of the main points of this paper is that the length scale and velocity fluctuation amplitude which are characteristic of turbulent transport in these flows scale like Rem−1/2Re_m^{-1/2}, where RemRe_m is the minimal Reynolds number for the onset of fully developed turbulence. From this scaling, a simple explanation of the dependence of RemRe_m with relative gap width in subcritical Couette-Taylor flows is developed. It is also argued that flows in the shearing sheet limit should be turbulent, and that the lack of turbulence in all such simulations performed to date is most likely due to a lack of resolution, as a consequence of the effect of the Coriolis force on the large scale fluctuations of turbulent flows. These results imply that accretion flows should be turbulent through hydrodynamic processes. If this is the case, the Shakura-Sunyaev α\alpha parameter is constrained to lie in the range 10−3−10−110^{-3}-10^{-1} in accretion disks, depending on unknown features of the mechanism which sustains turbulence. Whether the hydrodynamic source of turbulence is more efficient than the MHD one where present is an open question.Comment: 31 pages, 3 figures. Accepted for publication in Ap

    Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome.

    Get PDF
    The short rib polydactyly syndromes (SRPSs) are a heterogeneous group of autosomal recessive, perinatal lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs and polydactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify an additional SRPS gene and further unravel the functional basis for IFT. We perform whole-exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable length, including hyperelongated, cilia, Hedgehog pathway impairment and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation and skeletogenesis

    Development of a computerized 2D rating scale for continuous and simultaneous evaluation of two dimensions of a sensory stimulus

    Full text link
    INTRODUCTION One-dimensional rating scales are widely used in research and in the clinic to assess individuals' perceptions of sensory stimuli. Although these scales provide essential knowledge of stimulus perception, their limitation to one dimension hinders our understanding of complex stimuli. METHODS To allow improved investigation of complex stimuli, a two-dimensional scale based on the one-dimensional Gracely Box Scale was developed and tested in healthy participants on a visual and an auditory task (rating changes in brightness and size of circles and rating changes in frequency and sound pressure of sounds, which was compared to ratings on one-dimensional scales). Before performing these tasks, participants were familiarized with the intensity descriptors of the two-dimensional scale by completing two tasks. First, participants sorted the descriptors based on their judgment of the intensity of the descriptors. Second, participants evaluated the intensity of the descriptors by pressing a button for the duration they considered matching the intensity of the descriptors or squeezing a hand grip dynamometer as strong as they considered matching the intensity of the descriptors. RESULTS Results from these tasks confirmed the order of the descriptors as displayed on the original rating scale. Results from the visual and auditory tasks showed that participants were able to rate changes in the physical attributes of visual or auditory stimuli on the two-dimensional scale as accurately as on one-dimensional scales. DISCUSSION These results support the use of a two-dimensional scale to simultaneously report multiple dimensions of complex stimuli

    XMM-Newton observations of the Galactic Supernova Remnant CTB 109 (G109.1-1.0)

    Full text link
    We present the analysis of the X-ray Multi-Mirror Mission (XMM-Newton) European Photon Imaging Camera (EPIC) data of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0). CTB 109 is associated with the anomalous X-ray pulsar (AXP) 1E 2259+586 and has an unusual semi-circular morphology in both the X-ray and the radio, and an extended X-ray bright interior region known as the `Lobe'. The deep EPIC mosaic image of the remnant shows no emission towards the west where a giant molecular cloud complex is located. No morphological connection between the Lobe and the AXP is found. We find remarkably little spectral variation across the remnant given the large intensity variations. All spectra of the shell and the Lobe are well fitted by a single-temperature non-equilibrium ionization model for a collisional plasma with solar abundances (kT = 0.5 - 0.7 keV, tau = n_e t = 1 - 4 x 10^11 s cm^-3, N_H = 5 - 7 x 10^21 cm^-2). There is no indication of nonthermal emission in the Lobe or the shell. We conclude that the Lobe originated from an interaction of the SNR shock wave with an interstellar cloud. Applying the Sedov solution for the undisturbed eastern part of the SNR, and assuming full equilibration between the electrons and ions behind the shock front, the SNR shock velocity is derived as v_s = 720 +/- 60 km s^-1, the remnant age as t = (8.8 +/- 0.9) x 10^3 d_3 yr, the initial energy as E_0 = (7.4 +/- 2.9) x 10^50 d_3^2.5 ergs, and the pre-shock density of the nuclei in the ambient medium as n_0 = (0.16 +/- 0.02) d_3^-0.5 cm^-3, at an assumed distance of D = 3.0 d_3 kpc. Assuming CTB 109 and 1E 2259+586 are associated, these values constrain the age and the environment of the progenitor of the SNR and the pulsar.Comment: Accepted for publication in ApJ. 9 figures. Figs. 1 + 2 are in color (fig1.jpg, fig2.jpg
    • 

    corecore