195 research outputs found

    Glabralysins, potential New β-pore-forming toxin family members from the schistosomiasis vector snail biomphalaria glabrata

    Get PDF
    Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, we analyzed a new family of potential immune effectors and characterized five new genes that were named Glabralysins. The five Glabralysin genes showed different genomic structures and the high degree of amino acid identity between the Glabralysins, and the presence of the conserved ETX/MTX2 domain, support the hypothesis that they are pore-forming toxins. In addition, tertiary structure prediction confirms that they are structurally related to a subset of Cry toxins from Bacillus thuringiensis, including Cry23, Cry45, and Cry51. Finally, we investigated their gene expression profiles in snail tissues and demonstrated a mosaic transcription. We highlight the specificity in Glabralysin expression following immune stimulation with bacteria, yeast or trematode parasites. Interestingly, one Glabralysin was found to be expressed in immune-specialized hemocytes, and two others were induced following parasite exposure

    Hemocyte siRNA uptake is increased by 5' cholesterol-TEG addition in Biomphalaria glabrata, snail vector of schistosome.

    Get PDF
    Biomphalaria glabrata is one of the snail intermediate hosts of Schistosoma mansoni, the causative agent of intestinal schistosomiasis disease. Numerous molecular studies using comparative approaches between susceptible and resistant snails to S. mansoni infection have helped identify numerous snail key candidates supporting such susceptible/resistant status. The functional approach using RNA interference (RNAi) remains crucial to validate the function of such candidates. CRISPR-Cas systems are still under development in many laboratories, and RNA interference remains the best tool to study B. glabrata snail genetics. Herein, we describe the use of modified small interfering RNA (siRNA) molecules to enhance cell delivery, especially into hemocytes, the snail immune cells. Modification of siRNA with 5' Cholesteryl TriEthylene Glycol (Chol-TEG) promotes cellular uptake by hemocytes, nearly eightfold over that of unmodified siRNA. FACS analysis reveals that more than 50% of hemocytes have internalized Chol-TEG siRNA conjugated to Cy3 fluorophores, 2 hours only after in vivo injection into snails. Chol-TEG siRNA targeting BgTEP1 (ThioEster-containing Protein), a parasite binding protein, reduced BgTEP1 transcript expression by 70-80% compared to control. The level of BgTEP1 protein secreted in the hemolymph was also decreased. However, despite the BgTEP1 knock-down at both RNA and protein levels, snail compatibility with its sympatric parasite is not affected suggesting functional redundancy among the BgTEP genes family in snail-schistosoma interaction

    Evidence for Specific Genotype-Dependent Immune Priming in the Lophotrochozoan Biomphalaria glabrata Snail.

    Get PDF
    International audienceHistorically, the prevailing view in the field of invertebrate immunity was that invertebrates that do not possess acquired adaptive immunity rely on innate mechanisms with low specificity and no memory. Several recent studies have shaken this paradigm and suggested that the immune defenses of invertebrates are more complex and specific than previously thought. Mounting evidence has shown that at least some invertebrates (mainly Ecdysozoa) show high levels of specificity in their immune responses to different pathogens, and that subsequent reexposure may result in enhanced protection (recently called 'immune priming'). Here, we investigated immune priming in the Lophotrochozoan snail species Biomphalaria glabrata, following infection by the trematode pathogen Schistosoma mansoni. We confirmed that snails were protected against a secondary homologous infection whatever the host strain. We then investigated how immune priming occurs and the level of specificity of B. glabrata immune priming. In this report we confirmed that immune priming exists and we identified a genotype-dependent immune priming in the fresh-water snail B. glabrata

    064 Temporal trends in prescription rates of recommended treatments in chronic heart failure outpatients: a comparison of three French surveys IMPACT RECO I, II & III

    Get PDF
    BackgroundRecent registries have shown that recommended drugs for the treatment of congestive heart failure (CHF) remain under-prescribed in daily practice.AimsTo compare prescription rates of CHF drugs in three French surveys Impact Reco I, II and III.MethodsWe included outpatients followed by private cardiologists: 1947 in Impact Reco I (2005), 1974 in Impact Reco II (2005/2006) and 1574 in Impact Reco III (2007), with NYHA class II-IV heart failure and a left ventricular ejection fraction < 40%, and we compared treatment modalities. Recommended treatments and target doses were defined according to ESC guidelines.ResultsThere was an improvement in both the rate of prescription, and in the proportion of patients reaching target dose or 50% of target dose of ACE I, ARBs and beta blockers (see table).ConclusionWe observed an improvement with time in the management of CHF outpatients with an increase in prescription rates of recommended CHF drugs, as well as in the dosage used for ACE-I, ARB and beta-blockers,PrescriptionIMPACT I 2005IMPACT II 2005/2006IMPACT III 2007Global population191719741574ACE INumber patients with prescriptionN (%)1361 (71.0)1349 (68.3)1099 (70.2)Target dose%48.757.3*52.3•50% Target dose%80.484.5*88.4†,•ARBsNumber patients with prescriptionN (%)395 (20.6)592 (30.0)*516 (33.3)†,•Target dose%9.17.420.7†,•50% Target dose%52.949.768.6†,•BetablockersNumber patients with prescriptionN (%)1245 (65.2)1382 (70.0)*1229 (78.3)†,•Target dose%18.423.4*25.7†50% Target dose%47.353.5*59.9†•*: p<0.05 Impact II vs I•: p<0.05 Impact III vs II†: p<0.05 Impact III vs Ialthough there is still room for improvement particularly for beta blockers. These encouraging findings suggest a better awareness and implementation of ESC guidelines by French private cardiologists

    A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    Get PDF
    International audienceDiscoveries made over the past ten years have provided evidence that invertebrate anti-parasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called " immune priming " or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biompha-laria/Schistosoma system was undertaken to reconcile mechanisms with phenomena

    Experimental Infection of the Biomphalaria glabrata Vector Snail by Schistosoma mansoni Parasites Drives Snail Microbiota Dysbiosis.

    Get PDF
    Host-parasite interaction can result in a strong alteration of the host-associated microbiota. This dysbiosis can affect the fitness of the host; can modify pathogen interaction and the outcome of diseases. Biomphalaria glabrata is the snail intermediate host of the trematode Schistosoma mansoni, the agent of human schistosomiasis, causing hundreds of thousands of deaths every year. Here, we present the first study of the snail bacterial microbiota in response to Schistosoma infection. We examined the interplay between B. glabrata, S. mansoni and host microbiota. Snails were infected and the microbiota composition was analysed by 16S rDNA amplicon sequencing approach. We demonstrated that the microbial composition of water did not affect the microbiota composition. Then, we characterised the Biomphalaria bacterial microbiota at the individual scale in both naive and infected snails. Sympatric and allopatric strains of parasites were used for infections and re-infections to analyse the modification or dysbiosis of snail microbiota in different host-parasite co-evolutionary contexts. Concomitantly, using RNAseq, we investigated the link between bacterial microbiota dysbiosis and snail anti-microbial peptide immune response. This work paves the way for a better understanding of snail/schistosome interaction and should have critical consequences in terms of snail control strategies for fighting schistosomiasis disease in the field

    Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni.

    Get PDF
    International audienceAerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni

    Recommendations for the application and follow-up of quality controls in medical laboratories

    Get PDF
    This is a translation of the paper “Recommendations for the application and follow-up of quality controls in medical biology laboratories” published in French in the journal Annales de Biologie Clinique (Recommandations pour la mise en place et le suivi des contrôles de qualité dans les laboratoires de biologie médicale. Ann Biol Clin (Paris). 2019;77:577-97.). The recommendations proposed in this document are the result of work conducted jointly by the Network of Accredited Medical Laboratories (LABAC), the French Society of Medical Biology (SFBC) and the Federation of Associations for External Quality Assessment (FAEEQ). The different steps of the implementation of quality controls, based on a risk analysis, are described. The changes of reagent or internal quality control (IQC) materials batches, the action to be taken in case of non-conform IQC results, the choice of external quality assessment (EQA) scheme and interpretation of their results as well as the new issue of analyses performed on several automatic systems available in the same laboratory are discussed. Finally, the concept of measurement uncertainty, the robustness of the methods as well as the specificities of near-patient testing and rapid tests are described. These recommendations cannot apply for all cases we can find in medical laboratories. The implementation of an objective alternative strategy, supported with documented evidence, might be equally considered

    Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    Get PDF
    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on the parasite side of the interaction. Our findings shed new light on how and why invertebrate immunity develops
    • …
    corecore