171 research outputs found

    Comments on Organizational Aspects of the Inventory Control Problem

    Get PDF

    On the Two Bin Inventory Policy: An Application of the Arrow-Harris-Marschak Model

    Get PDF

    Increased Expression of the Auxiliary β(2)-subunit of Ventricular L-type Ca(2+) Channels Leads to Single-Channel Activity Characteristic of Heart Failure

    Get PDF
    BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary β-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC β-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac β-subunits: Unlike β(1) or β(3) isoforms, β(2a) and β(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, β(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal β(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing (“Adaptive Phase”), reveal the opposite phenotype, viz : reduced single-channel activity accompanied by lowered β(2) expression. Additional evidence for the cause-effect relationship between β(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible β(2) cardiac overexpression. Here in non-failing hearts induction of β(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of β(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure

    Multilocation Corn Stover Harvest Effects on Crop Yields and Nutrient Removal

    Get PDF
    Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha−1 (80 to 192 bu ac−1). Harvesting an average of 3.9 or 7.2 Mg ha−1(1.7 or 3.2 tons ac−1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha−1, respectively, with moderate (3.9 Mg ha−1) harvest and by 47, 5.5, and 62 kg ha−1, respectively, with high (7.2 Mg ha−1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest
    corecore