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1. tien

The inventory problem as formulated by Arrow, Harris and Marschak
applies with slight medifications te the follewing problem in management
science: a firm er department sells a conmodity of which steck 1s taken
at the begimaming ef each "peried." The demand fer this commedity is a
random variable identically and imdependemtly distributed in @ifferent
periods, Unfilled demand 1s backlegged to the beginming ef the next peried.
The firm fellows am 8,S eor'two-bin" imventery pelicy: whenever at the
beginning of a peried stock is belew the reordering point g an crder is
placed, amd filled immediately, which brimgs stock back te a fixed level
S .

With each erder is asseclated a constamt cost and a carrying cost
which is propertiomal te the initial steck fer the peried under consideratiom.
If no sales are lost, tetal revenue and any prepertional cbsts of orders are
fixed except fer imterest chamrges which may be absorbed im the carrying cost.
However, if sales are lost or a backlog is incurred them 2 penalty arises
reflecting the loss im profit amd goodwill to the firm or the probability
of this happemiag. The prcoblem is to determine these values of s and S
which will minimize the loss, namely the total expected discounted cost in-
cluding penalities.

A specific imstance eof this problem occurs im the storing of machinery

repair parts for a manufacturing firm in Chicago. These repair parts are
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used in the firm's ewn plant and are stored ia a central wareheuse. In
this paper we analyze the distributions of demamnd of several of these parts
and investigate the applicability of the Arrew-Harris-Marschak inventory
model., It turme out that the sbserved distributions are approximately
negative expemential. For this distributiom the integral equation of the
Arrew-Harris-Marschak model may be solved imn clesed form and simple ex-
pressions may be ebtained for the unaknowns s and S . These celculatioms,
which may be eof some general interest, are carried out ia the latter part

of the paper.

In thie section we shall analyze some data on the demamd fer machine
repairs parts at the central warehouse of the mamufacturing firm referred
te im the imtreduction. We shall test the data fer stationarity and independ-
ence to determime ¥ the Arrow-Harris-Marschak model might be applied. We state
the rationale for approximating the distribution of demand by the negative
exponential function and ask how well this distrubtiom fits the ebserved demand
data.
2.1 Demands at the part using level are gemerated by failure of parts installed
in operating mechinery. As is well known, if the conditional probability of
failure of a part ig independent of its age, the distribution of length of time
between two success.ve fallures is negative exponential and that of failures
per unit time is Poisson, assuming that replacements are made instantly. Davis
has examined a large number of sets of time-to-failure data and coancludes that

"the exponential theory of failure may be regarded as a useful approximation of
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certain classes of fallure distribution” {2, p. 123]. Thus one might expect,
as a first approximation, that part usage is distributed according to the
Poisson law. But in this case there are many part using plants, each with
many machines, which use these parts. If the Poisson parameter for these
is itself distributed negative exponentially, then the resulting distribution
of part usage 1s geometric (4, pp. 124-125]. While this distribution is dis-
crete it may be approximated by the continuous negative exponential distribution.
These considerations; of course, relate to the usage of repair parts in the
part using plants. The faet that they send orders to the central warehouse
only when their atocks fall to certain levels might cause the distribution
of total orders placed by all plants--central warehouse demand--to differ
substantially from that of total part usage in these same plants.
2.2 Departures from stationarity might be of at least two different types,
trend and seasonal variation. Sales of the company's final output have been
increasing and with more machines of a particular type being used or existing
machines being used more intensively it might be expected that more repair
parts would be needed as time progresses. Also there is a tendency for sales
to be greater in the last two quarters of the year than in the first two so
that one might expect that repair part demand would vary from quarter to quarter.
We thus wish to test for the existence of trend and seasonal variation.

One way to do so is to use a two way analysis of variance, classifying
our observations by year and quarter. Since we can't agsume that the obser-
vations have come from a normal population we have used Friedman's Ranked

Analysis of Variance [3), a standard non-parametric technique.
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2
In Table I, below, the values of his Xr statistic for each of the six paius

for the year and quarter comparisons as well as the approximate significance

2

. 18 distributed as Xg). In each case the

level are given (in the limit X

test were based upon four quarterly cbservations for each of seven years.

Table I

Rank Analysis of Variance

2%
Part L 2
A, year T+205 0.30
quarter 3,643 0.31
B, year 7.688 0.26
quarter 5.229 0.16
C, year T.714 0.26
quarter 2.486 0.48
D, year 7.607 0.27
quarter 0.728 0.87
E, year 10.955 0.09
quarter 1.586 0.66
F, year 5.571 0.u7™
quarter 8.657 0.23

* For the year comparsion Xi has slix degrees of freedom, for the quarter
comparsion three,

In only one of the twelve cases 18 the test statistic gignificant at the 5
per cent level, and if the test were independent, the probability of at
least one "significant result" if there really is no trend or seasonal

variation is about 0.46. It does not appear from these data that there is
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a substantial departure from stationarity.

If the distributions of the cobservations at different times were
really statistically independent we would expect to find that the cbserved
demands are uncorrelated. To test for correlation of the observations we
have again used a non-parametric test, Spearman's rank correlation ccefficient
p . On the null hypothesis of independence this ls distributed approximstely
as Student's t {4, p. 401]. Values of p for current demand and demand
lagged once and for current demand and demand lagged twice have been computea.

The results are shown in Table II. None of the p's is significant

Table II

- Spearman's p -

Part L —B*_

A, one lag 0.171 0.38
two lags -0.237 0.24

B, one lag -0-0979 0.66
two lags 0.240 0.22

C, one lag 0.123 0.56
two lags -0.219 0.28

D, one lag 0.0673 0.72
two lags 0.164 0.h4%

E, one lag 0.235 0.2k
two lags 0.352 0.08

F, one lag -0.260 0.19
two lags -0.0649 0.76

* For Parts A and B, the one lag "t" has 26 degrees of freedom, while the
two lag "t" has 25.
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at the 5 per cent level. Thus the data do not appear to refute the hypothesis
of independence.

2.3 When we turn to testing our hypothesis about the form of the distribution
of repair part demand it is difficult to form a judgement about the goodness of
fit. We would really like to know how close the actual distribution is to the
negative exponential in terms of the difference in discounted expected loss
associated with the order policies which are optimal for these two distributions.
Conventional goodness of fit tests, such as the chi-square test, may be poorly
adapted to this purpose. An observed distribution of repair part demand might
differ significantly, as judged by the chi-square criterion, from what we would
expect if the parent distribution were really negative exponential even though
the "true" optimal order policy differs but little, as measured by discounted
expected loss, from the one that is optimal for the negative exponential
distribution. But the construction of a statistical test appropriate for this
purpose is guite beyﬁnd the scope of thie paper. Thus, while we shall apply the
chi-square test, it should be interpreted only as a means of describing certain
aspects of the bbaerved demands .

The negative exponential distribution was fitted to all six repair part
distributions and the chi-square test applied to each of the fitted distri-
butjons. The results of these are reproduced.in‘Tdble III, while cumulative
observed and fitted negative exponential distribution functions for each part
are plotted in the accompanylng diagrams. There is considerable variation
in the "goodness of fit." One sees that the negative exponential fits very well
in two of the six cases, parts A and F, while it fits very badly for two others,

parts C and E. For the remaining two the test statistic is "significant” at



Part A%

Demand

Under 25
25-49
50-99

100-199

Over 199

Part C

Demand

Under 50
20-99
100-149
150-249
Over 249

Part E

Demand

Under 10
10-19
20-39
40-59

Qver 59

-T,.

Table T1I

Chi-square Goodness of Fit Tests

Qbserved

6
4
T
5
2

Qbgerved

PO O\ BN

Ohgerved

MO 1O TN

*

Expected

5.63
4.39
5.88
5.38
2!72

XE(B) = 0.488, P = 0.92

Expected

T30
5.5k
4.0k
5.10
5.81

xa(a) = 18.801, P = 0.0003

ct

Expected

O N =3\
ERIVK

x2(5) = 12.497, P = 0.006

Part B*
Demand Obgserved Expected
Under 25 b - 6.17
25-49 3 4.68
50-99 11 5.98
100-199 i 5.0h4
Over 199 2 2.13%
X°(3) = 5.793, P = 0.12
Part D
Demand Cbserved Expected
Under 10 6 5.58
10-19 2 4.68
20-39 I 6.63
40-59 12 6.75
Over 59 b 4.35
x2(3) = 6.720, P = 0.08
Part F
Demand QObaerved Expected
Under 25 5 5.13%
25-49 L L,27
50-99 7 6.30
100-199 7 6.92
Over 199 5 5.39

X2(3) = 0.128, P = 0.99

Tests for Parts A and B were based upon demand for 24 quarters only

gince the reported demands for 5 gquarters are suspected of being subject to
serious error,
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about the ten percent level. From the charts it appears that, expect for

part C, the fit is good in the upper tail. In view of the remarks in the above
paragraph it is difflcult to judge the closeness of fit for our purposes. 1t
should be noted, however, that this distribution appears to give the best

simple approximation to the observed distributions.*

* In all six cases it would appear that the Polsson distribution fits very
badly. For each of them there is a much greater variation in demand than

one would expect if the distribution were Poisson. In only one case, part C,
was it poasible to obtain a better fit with the more general GCamma distri-
bution, of which the negative exponential is a member.

3.1 We may define the commodity unit as equal to the average demand
per pericd. This casts the distribution function into the particularly

simple form 4dF = e ¥ax .

Notation

X +8 stock

£(y) the expected loss during a period for which initial stock is y
@ discount rate

F(x) cuﬁulétive distribution function of demand per period

c the (average) carrying cost per unit commodity per period

a thé penalty per unit of shortage.

Now

(1) £(y) =cy +a z (z-y)e %dz = cy + ae ™Y
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The argument of the Arrow-Harris-Marschak paper yields an integral
equation [1, p. 264, equation 5.6] for our loss function A(x).

() Mx) = #'x+8) +ar(0) (1-~Fx)] +a £x Mx-t)aF(t) x>0
Ite dderivation will not be repeated here. By continuity

A0) = £(s) + a A(0)

() As)

l-cx

n

Substituting (1) in (2)

(%) Mx) = c(x + 8) + ae-(x + 8)+ a A0)e s o &xk(x - t)e-tdt .
Putting
(5) 15 Mt)e"at = ufx)

we may rewrite (4) as a differential equation
' -8 b
(6) u (x) -~ ou(x) = ae "+ e(x + s)e"+ a A(0)
with

u(0) = 0,

Its solution is

u(x) = X[

P e - ¢ ) - 5

l-c

=5

ae_ "~ _ A(0)

X

* Ty ?)

from which, inverting (5)
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£ (g +1- x) £

-x !
AMx) =e Tuex = I - (1-0)

2

. -8
+ m‘““?’[ ' a; + A(0) - % + -é%)a]

Determining A(0) from (3) and (1) and substituting we finally have

-s
" () - Slsa) g, Gl et as g

Write
( 8) 8B -8mag

To determine 8 and S we have the conditions

(9) A (o) =0
(10) 2M0) - aa) = K

Now

(a-l)x[ ae™®

A (x) = i%; + (a=1)e T * ZE&%T 2]

( 9) becomss therefore*

o * The original paper [1,p.269] contains a similar formula for the case that
asl, l.¢.,, that no discounting takes pliace.

(11) G = ——— log [a+ (1 -a) =2 e ®]

for brevity write:

(12) y=o+ (1) '%— e ®



Condition (10) gives use to

Qe se " cg  _ (a-l)o| ae™® o

(;fa)a + (1-a) (1) ~ © (1) * (l—a)2 = K,

or \
(13) [ + (1=@) _2" e® - (1) o - e(@1)o I:(l--cz)f;_e"s + a] = (']J:'L LS

Substituting y , where o '—%i?a) log y,

2
(14) y= log y+1+ {1-0)%

c

The velues s and S5 may now be found as follows: first determine y by
iteration of (14) or through an approximation formula .- (below).

8, o, and S5 are then given by

_; = 108 :(y_a'])

(15) o = 1-; log y

S=8+0a

3.2 The following example applies to one of the peris whose distribution
was analyzed in section 2.

K = $20.00
¢ =@ 15 per 100 parts per quarter
a = 0.975 per quarter

150
a = per 100 parts

1500
then

y = 1.0408
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a8 s (100 partsg) o (100 parts) S (100 part
150 0.7% 1.60 | 2.33
1500 3.04 1.60 ! .6k

3.3 The following approximation formula for y 1s useful and leads to interesting
estimates of 8 and o . This formula is valid wheneverAthe term ‘5‘(1-«:1)2 on
the right hand side of (14) is of small order compared to 1. 1In view of the fact
that ¢ 1s the carrying cost for as much as the mean demand per period, and

that o 1s the discount factor for a period usually much less than a year, this

is apt to be true in all pracfical cases. |

For small values of the last term in (14) y is approximately 1. Writing
' 2
z

2

Yy =1+ 2 we may use the Taylor approximation log y =z - which when

22 K 2
inserted in {14) ylelds 1 + 2z &z - + 1+ (L-a) or

2
(17) vy 1+ (1) \i—fﬁ—

Upon substitution in (16) we cbtain

= Il-c_x- log l:l + (l-cx)q'-TE::I
P

(18) . -z\l —EK-E - (1) K-

Q
[}

-

Thus to a first approximation, the order size o is independent of the penalty a
and ‘of the reordering"rint s . Without the second (small) term on the right

hand side, (18) represents the familiar lot size rule {5, p. 32 sqq.] minimizing
the average cost per item in a lot of o, -E- + <L ¢, (Since one item is sold per

2

day on the average %‘ represents the mean storage time).
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When substituted in (15), (17) yields

(19) § £ log 2 T : = log -2 o log {1 + o)

\ 2 ¢

c

This may be compared with the one-period formula* for an optimal initial stock

o0
*  obtained by minimizing ¢ [ (x =z) aF(z) + a | (z - x) dF(z)
o x

F{x) . .8
1 -®x) e

X, representing an average initial stock, may be equated to 8 + ® ¢ where

O0<®<Ll. With F(x) =1-¢e X we (ltain

(20) 8 & log (1 + “%‘) -89

3.4 The cost of an inventory policy

A - 8) = r0) Aa) .

T lex

will now be considered as & function of the average demand m per period.
Previously m = 1 . Let now the units of demand be m times the old units,

Then



- 14 -

From the approximation formula (19) we obtain

8 -
B & _103%- log (1 +d-‘z')
o o ®
and so
&s) ; -8, A
l—a'[cos*'aoe ]l-cz
a \[*-“-‘-
= {co log '“""Q-co - <, log (1 + -z—com )] ""m—'l_a

+

l-ox

e .
O

For large m the Taylor approximation of the log may be used yielding

¢ a
L(-a)--‘{-‘_&-é——q"l_a (L + log ""Q-)m-r"

This is the cost that would be incurred if an order were placed at the
beginning of each period so as to make stocks equal to (1 & log —:Q—) m .
To a first degree of approximation the cost of an inventory policy isothus a
linear function of the size of demand, the positive constant term giving

rise to economies of scale.
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