153 research outputs found

    The Vascular Microenvironment and Systemic Sclerosis

    Get PDF
    The role of the vascular microenvironment in the pathogenesis Systemic Sclerosis (SSc) is appreciated clinically as Raynaud's syndrome with capillary nail bed change. This manifestation of vasculopathy is used diagnostically in both limited and diffuse cutaneous subsets of SSc, and is thought to precede fibrosis. The degree of subsequent fibrosis may also be determined by the vascular microenvironment. This paper describes why the vascular microenvironment might determine the degree of end-organ damage that occurs in SSc, with a focus on vascular cell senescence, endothelial progenitor cells (EPC) including multipotential mesenchymal stem cells (MSC), pericytes, and angiogenic monocytes. An explanation of the role of EPC, pericytes, and angiogenic monocytes is important to an understanding of SSc pathogenesis. An evolving understanding of the vascular microenvironment in SSc may allow directed treatment

    The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men

    Get PDF
    Telomere length (TL) has been proposed as a marker of mitotic cell age and as a general index of human organismic aging. Short absolute leukocyte telomere length has been linked to cardiovascular-related morbidity and mortality. Our aim was to test whether the rate of change in leukocyte TL is related to mortality in a healthy elderly cohort. We examined a subsample of 236 randomly selected Caucasian participants from the MacArthur Health Aging Study (aged 70 to 79 years). DNA samples from baseline and 2.5 years later were assayed for mean TL of leukocytes. Percent change in TL was calculated as a measure of TL change (TLC). Associations between TL and TLC with 12-year overall and cardiovascular mortality were assessed. Over the 2.5 year period, 46% of the study participants showed maintenance of mean bulk TL, whereas 30% showed telomere shortening, and, unexpectedly, 24% showed telomere lengthening. For women, short baseline TL was related to greater mortality from cardiovascular disease (OR = 2.3; 95% CI: 1.0 - 5.3). For men, TLC (specifically shortening), but not baseline TL, was related to greater cardiovascular mortality, OR = 3.0 (95% CI: 1.1 - 8.2). This is the first demonstration that rate of telomere length change (TLC) predicts mortality and thus may be a useful prognostic factor for longevity

    Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China.

    Get PDF
    A recent genome-wide association study of lung cancer among never-smoking females in Asia demonstrated that the rs2736100 polymorphism in the TERT-CLPTM1L locus on chromosome 5p15.33 was strongly and significantly associated with risk of adenocarcinoma of the lung. The telomerase gene TERT is a reverse transcriptase that is critical for telomere replication and stabilization by controlling telomere length. We previously found that longer telomere length measured in peripheral white blood cell DNA was associated with increased risk of lung cancer in a prospective cohort study of smoking males in Finland. To follow up on this finding, we carried out a nested case-control study of 215 female lung cancer cases and 215 female controls, 94% of whom were never-smokers, in the prospective Shanghai Women's Health Study cohort. There was a dose-response relationship between tertiles of telomere length and risk of lung cancer (odds ratio (OR), 95% confidence interval [CI]: 1.0, 1.4 [0.8-2.5], and 2.2 [1.2-4.0], respectively; P trend = 0.003). Further, the association was unchanged by the length of time from blood collection to case diagnosis. In addition, the rs2736100 G allele, which we previously have shown to be associated with risk of lung cancer in this cohort, was significantly associated with longer telomere length in these same study subjects (P trend = 0.030). Our findings suggest that individuals with longer telomere length in peripheral white blood cells may have an increased risk of lung cancer, but require replication in additional prospective cohorts and populations

    A Common Variant in the Telomerase RNA Component Is Associated with Short Telomere Length

    Get PDF
    Background: Telomeres shorten as cells divide. This shortening is compensated by the enzyme telomerase. We evaluated the effect of common variants in the telomerase RNA component (TERC) gene on telomere length (TL) in the populationbased Health Aging and Body Composition (Health ABC) Study and in two replication samples (the TwinsUK Study and the Amish Family Osteoporosis Study, AFOS). Methodology: Five variants were identified in the TERC region by sequence analysis and only one SNP was common (rs2293607, G/A). The frequency of the G allele was 0.26 and 0.07 in white and black, respectively. Testing for association between TL and rs2293607 was performed using linear regression models or variance component analysis conditioning on relatedness among subjects. Results: The adjusted mean TL was significantly shorter in 665 white carriers of the G allele compared to 887 non-carriers from the Health ABC Study (4.69±0.05 kbp vs. 4.86±0.04 kbp, measured by quantitative PCR, p = 0.005). This association was replicated in another white sample from the TwinsUK Study (6.90±0.03 kbp in 301 carriers compared to 7.06±0.03 kbp in 395 non-carriers, measured by Southern blots, p = 0.009). A similar pattern of association was observed in whites from the family-based AFOS and blacks from the Health ABC cohort, although not statistically significant, possibly due to the lower allele frequency in these populations. Combined analysis using 2,953 white subjects from 3 studies showed a significant association between TL and rs2293607 (β =-0.19±0.04 kbp, p = 0.001). Conclusion: Our study shows a significant association between a common variant in TERC and TL in humans, suggesting that TERC may play a role in telomere homeostasis. © 2010 Njajou et al

    Mutations in C16orf57 and normal-length telomeres unify a subset of patients with dyskeratosis congenita, poikiloderma with neutropenia and Rothmund–Thomson syndrome

    Get PDF
    Dyskeratosis congenita (DC) is an inherited poikiloderma which in addition to the skin abnormalities is typically associated with nail dystrophy, leucoplakia, bone marrow failure, cancer predisposition and other features. Approximately 50% of DC patients remain genetically uncharacterized. All the DC genes identified to date are important in telomere maintenance. To determine the genetic basis of the remaining cases of DC, we undertook linkage analysis in 20 families and identified a common candidate gene region on chromosome 16 in a subset of these. This region included the C16orf57 gene recently identified to be mutated in poikiloderma with neutropenia (PN), an inherited poikiloderma displaying significant clinical overlap with DC. Analysis of the C16orf57 gene in our uncharacterized DC patients revealed homozygous mutations in 6 of 132 families. In addition, three of six families previously classified as Rothmund–Thomson syndrome (RTS—a poikiloderma that is sometimes confused with PN) were also found to have homozygous C16orf57 mutations. Given the role of the previous DC genes in telomere maintenance, telomere length was analysed in these patients and found to be comparable to age-matched controls. These findings suggest that mutations in C16orf57 unify a distinct set of families which clinically can be categorized as DC, PN or RTS. This study also highlights the multi-system nature (wider than just poikiloderma and neutropenia) of the clinical features of affected individuals (and therefore house-keeping function of C16orf57), a possible role for C16orf57 in apoptosis, as well as a distinct difference from previously characterized DC patients because telomere length was normal

    Cumulative Inflammatory Load Is Associated with Short Leukocyte Telomere Length in the Health, Aging and Body Composition Study

    Get PDF
    Background: Leukocyte telomere length (LTL) is an emerging marker of biological age. Chronic inflammatory activity is commonly proposed as a promoter of biological aging in general, and of leukocyte telomere shortening in particular. In addition, senescent cells with critically short telomeres produce pro-inflammatory factors. However, in spite of the proposed causal links between inflammatory activity and LTL, there is little clinical evidence in support of their covariation and interaction. Methodology/Principal Findings: To address this issue, we examined if individuals with high levels of the systemic inflammatory markers interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) had increased odds for short LTL. Our sample included 1,962 high-functioning adults who participated in the Health, Aging and Body Composition Study (age range: 70-79 years). Logistic regression analyses indicated that individuals with high levels of either IL-6 or TNF-α had significantly higher odds for short LTL. Furthermore, individuals with high levels of both IL-6 and TNF-α had significantly higher odds for short LTL compared with those who had neither high (OR = 0.52, CI = 0.37-0.72), only IL-6 high (OR = 0.57, CI = 0.39-0.83) or only TNF-α high (OR = 0.67, CI = 0.46-0.99), adjusting for a wide variety of established risk factors and potential confounds. In contrast, CRP was not associated with LTL. Conclusions/Significance: Results suggest that cumulative inflammatory load, as indexed by the combination of high levels of IL-6 and TNF-α, is associated with increased odds for short LTL. In contrast, high levels of CRP were not accompanied by short LTL in this cohort of older adults. These data provide the first large-scale demonstration of links between inflammatory markers and LTL in an older population
    corecore