2 research outputs found

    Pre-clinical development of a vaccine for human lymphatic filariasis

    No full text
    This study was conducted to optimize a fusion protein vaccine for translational development as a vaccine against the human tropical parasitic infection, lymphatic filariasis (LF). The vaccine candidate, His-tagged rBmHAXT was developed previously in our laboratory and was tested in various animal models including mouse, gerbils and Rhesus macaque where it exhibited significant levels of vaccine-induced protection. However, for commercial manufacturing and for regulatory approval for human use, there was a need to modify the vaccine antigen and its production and analytical release methods. Therefore, the major focus of this study was to develop a process for manufacturing an affinity tag-free rBmHAXT and evaluate its immunogenicity, potency and protective efficacy in both inbred and outbred mouse models, as well as in outbred gerbil models. Our results demonstrate that the tag-free rBmHAXT vaccine produced with a process suitable for cGMP production had protective properties equivalent to the original His-tagged rBmHAXT

    DataSheet1_Lyophilization process engineering and thermostability of ID93 + GLA-SE, a single-vial adjuvanted subunit tuberculosis vaccine candidate for use in clinical studies.pdf

    No full text
    Promising clinical efficacy results have generated considerable enthusiasm for the potential impact of adjuvant-containing subunit tuberculosis vaccines. The development of a thermostable tuberculosis vaccine formulation could have significant benefits on both the cost and feasibility of global vaccine distribution. The tuberculosis vaccine candidate ID93 + GLA-SE has reached Phase 2 clinical testing, demonstrating safety and immunogenicity as a two-vial point-of-care mixture. Earlier publications have detailed efforts to develop a lead candidate single-vial lyophilized thermostable ID93 + GLA-SE vaccine formulation. The present report describes the lyophilization process development and scale-up of the lead candidate thermostable ID93 + GLA-SE composition. The manufacture of three full-scale engineering batches was followed by one batch made and released under current Good Manufacturing Practices (cGMP). Up to 4.5 years of stability data were collected. The cGMP lyophilized ID93 + GLA-SE passed all manufacturing release test criteria and maintained stability for at least 3 months when stored at 37°C and up to 24 months when stored at 5°C. This work represents the first advancement of a thermostable adjuvant-containing subunit tuberculosis vaccine to clinical testing readiness.</p
    corecore