9,175 research outputs found

    The Active Site Sulfenic Acid Ligand in Nitrile Hydratases Can Function as a Nucleophile

    Get PDF
    Nitrile hydratase (NHase) catalyzes the hydration of nitriles to their corresponding commercially valuable amides at ambient temperatures and physiological pH. Several reaction mechanisms have been proposed for NHase enzymes; however, the source of the nucleophile remains a mystery. Boronic acids have been shown to be potent inhibitors of numerous hydrolytic enzymes due to the open shell of boron, which allows it to expand from a trigonal planar (sp2) form to a tetrahedral form (sp3). Therefore, we examined the inhibition of the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) by boronic acids via kinetics and X-ray crystallography. Both 1-butaneboronic acid (BuBA) and phenylboronic acid (PBA) function as potent competitive inhibitors of PtNHase. X-ray crystal structures for BuBA and PBA complexed to PtNHase were solved and refined at 1.5, 1.6, and 1.2 Å resolution. The resulting PtNHase–boronic acid complexes represent a “snapshot” of reaction intermediates and implicate the cysteine-sulfenic acid ligand as the catalytic nucleophile, a heretofore unknown role for the αCys113–OH sulfenic acid ligand. Based on these data, a new mechanism of action for the hydration of nitriles by NHase is presented

    Analyzing the Catalytic Role of Active Site Residues in the Fe-type Nitrile Hydratase from \u3cem\u3eComamonas testosteroni\u3c/em\u3e Ni1

    Get PDF
    A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (kcat = 10 ± 2 s−1) accounts for less than 1 % of the wild-type activity (kcat = 1100 ± 30 s−1) while the Km value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with kcat values of 220 ± 40 and 77 ± 13 s−1, respectively, and Km values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a kcat value of 132 ± 3 s−1 and a Km value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys104-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion

    Aerosol reactor production of uniform submicron powders

    Get PDF
    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K

    Onset of runaway nucleation in aerosol reactors

    Get PDF
    The onset of homogeneous nucleation of new particles from the products of gas phase chemical reactions was explored using an aerosol reactor in which seed particles of silicon were grown by silane pyrolysis. The transition from seed growth by cluster deposition to catastrophic nucleation was extremely abrupt, with as little as a 17% change in the reactant concentration leading to an increase in the concentration of measurable particles of four orders of magnitude. From the structure of the particles grown near this transition, it is apparent that much of the growth occurs by the accumulation of clusters on the growing seed particles. The time scale for cluster diffusion indicates, however, that the clusters responsible for growth must be much smaller than the apparent fine structure of the product particles

    Friction and wear of plasma-deposited diamond films

    Get PDF
    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen

    Enhanced heat capacity and a new temperature instability in superfluid He-4 in the presence of a constant heat flux near T-lambda

    Get PDF
    We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda point Tλ, is enhanced by a constant heat flux Q. The heat capacity at constant Q, CQ, is predicted to diverge at a temperature Tc(Q)<Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q), below the theoretical value, Tc(Q). We argue that TDAS(Q) can be accounted for by a temperature instability at the cell wall, and is therefore distinct from Tc(Q). The excess heat capacity we measure has the predicted scaling behavior as a function of T and Q, but it is much larger than predicted by current theory

    Practical simulation /optimization modeling for groundwater quality and quantity management

    Get PDF
    Software for mathematically optimizing groundwater management has improved significantly in recent years. The SOMOS code can readily handle large complex plume and water management problems. Most recently, it developed a least-cost $40.82M 30-yr pumping strategy for the 6.58 mile long Blaine NAD plume. That strategy was 19 percent better than the strategy developed simultaneously by an experienced consultant using normal trial and error simulation procedures. The management problem involved 60 stress periods, and well installation and pumping rates that could change every 10 periods. The optimal strategy employed 10 new wells. At a simpler site, SOMOS helped select robust strategies from hundreds of least cost strategies that it identified--all having virtually the same objective function values. For another site, it developed a least-cost strategy for concentration constraints that change with time. A third site demonstrated the need for client-regulator-designer interaction during the design process. It also revealed SOMOS’ power in easily modifying posed optimization problem formulations to increase the chance that developed strategies will be acceptable to regulators. Improvements over strategies developed by others using normal trial-and-error ranged up to 50%. SOMOS utility in addressing complicated water resource supply problems is also demonstrated

    Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    Get PDF
    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment
    corecore