48 research outputs found

    Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion

    Get PDF
    Recent research has suggested a possible link between sports-related concussions and neurodegen-erative processes, highlighting the importance of developing methods to accurately quantify head impact tolerance. The use of kinematic parameters of the head to predict brain injury has been sug-gested because they are indicative of the inertial response of the brain. The objective of this study is to characterize the rotational kinematics of the head associated with concussive impacts using a large head acceleration dataset collected from human subjects. The helmets of 335 football players were instrumented with accelerometer arrays that measured head acceleration following head impacts sustained during play, resulting in data for 300,977 subconcussive and 57 concussive head impacts. The average subconcussive impact had a rotational acceleration of 1230 rad/s2 and a rotational ve-locity of 5.5 rad/s, while the average concussive impact had a rotational acceleration of 5022 rad/s2 and a rotational velocity of 22.3 rad/s. An injury risk curve was developed and a nominal injury value of 6383 rad/s2 associated with 28.3 rad/s represents 50% risk of concussion. These data provide an increased understanding of the biomechanics associated with concussion, and they provide critical insight into injury mechanisms, human tolerance to mechanical stimuli, and injury prevention tech-niques

    Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion

    Get PDF
    Recent research has suggested a possible link between sports-related concussions and neurodegen-erative processes, highlighting the importance of developing methods to accurately quantify head impact tolerance. The use of kinematic parameters of the head to predict brain injury has been sug-gested because they are indicative of the inertial response of the brain. The objective of this study is to characterize the rotational kinematics of the head associated with concussive impacts using a large head acceleration dataset collected from human subjects. The helmets of 335 football players were instrumented with accelerometer arrays that measured head acceleration following head impacts sustained during play, resulting in data for 300,977 subconcussive and 57 concussive head impacts. The average subconcussive impact had a rotational acceleration of 1230 rad/s2 and a rotational ve-locity of 5.5 rad/s, while the average concussive impact had a rotational acceleration of 5022 rad/s2 and a rotational velocity of 22.3 rad/s. An injury risk curve was developed and a nominal injury value of 6383 rad/s2 associated with 28.3 rad/s represents 50% risk of concussion. These data provide an increased understanding of the biomechanics associated with concussion, and they provide critical insight into injury mechanisms, human tolerance to mechanical stimuli, and injury prevention tech-niques

    Head Impact Exposure in Youth and Collegiate American Football

    Get PDF
    The relationship between head impact and subsequent brain injury for American football players is not well defined, especially for youth. The objective of this study is to quantify and assess Head Impact Exposure (HIE) metrics among youth and collegiate football players. This multiseason study enrolled 639 unique athletes (354 collegiate; 285 youth, ages 9–14), recording 476,209 head impacts (367,337 collegiate; 108,872 youth) over 971 sessions (480 collegiate; 491 youth). Youth players experienced 43 and 65% fewer impacts per competition and practice, respectively, and lower impact magnitudes compared to collegiate players (95th percentile peak linear acceleration (PLA, g) competition: 45.6 vs 61.9; 95th percentile PLA practice: 42.6 vs 58.8; 95th percentile peak rotational acceleration (PRA, rad∙s–2) competition: 2262 vs 4422; 95th percentile PRA practice: 2081 vs 4052; 95th percentile HITsp competition: 25.4 vs 32.8; 95th percentile HITsp practice: 23.9 vs 30.2). Impacts during competition were more frequent and of greater magnitude than during practice at both levels. Quantified comparisons of head impact frequency and magnitude between youth and collegiate athletes reveal HIE differences as a function of age, and expanded insight better informs the development of age-appropriate guidelines for helmet design, prevention measures, standardized testing, brain injury diagnosis, and recovery management

    Can helmet design reduce the risk of concussion in football?

    Get PDF
    Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%–75.8%). When controlling for each player’s exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ2 = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury

    Restoration of contact inhibition in human glioblastoma cell lines after MIF knockdown

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF) in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis.</p> <p>Results</p> <p>Here we show that <it>in vitro </it>targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or anti-MIF antibody treatment reduced the growth rates of tumor cells. Of note is the marked decrease of proliferation under confluent and over-confluent conditions, implying a role of MIF in overcoming contact inhibition. Several proteins involved in contact inhibition including p27, p21, p53 and CEBPalpha are upregulated in the MIF antisense clones indicating a restoration of contact inhibition in the tumor cells. Correspondingly, we observed a marked increase in MIF mRNA and protein content under higher cell densities in LN18 cells. Furthermore, we showed the relevance of the enzymatic active site of MIF for the proliferation of glioblastoma cells by using the MIF-tautomerase inhibitor ISO-1.</p> <p>Conclusion</p> <p>Our study adds another puzzle stone to the role of MIF in tumor growth and progression by showing the importance of MIF for overcoming contact inhibition.</p
    corecore