4,293 research outputs found

    Weather data dissemination to aircraft

    Get PDF
    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels

    LAW AND LANGUAGE IN JAPAN AND IN THE UNITED STATES

    Full text link

    Supernova enrichment and dynamical histories of solar-type stars in clusters

    Full text link
    We use N-body simulations of star cluster evolution to explore the hypothesis that short-lived radioactive isotopes found in meteorites, such as 26-Al, were delivered to the Sun's protoplanetary disc from a supernova at the epoch of Solar System formation. We cover a range of star cluster formation parameter space and model both clusters with primordial substructure, and those with smooth profiles. We also adopt different initial virial ratios - from cool, collapsing clusters to warm, expanding associations. In each cluster we place the same stellar population; the clusters each have 2100 stars, and contain one massive 25M_Sun star which is expected to explode as a supernova at about 6.6Myr. We determine the number of Solar (G)-type stars that are within 0.1 - 0.3pc of the 25M_Sun star at the time of the supernova, which is the distance required to enrich the protoplanetary disc with the 26-Al abundances found in meteorites. We then determine how many of these G-dwarfs are unperturbed `singletons'; stars which are never in close binaries, nor suffer sub-100au encounters, and which also do not suffer strong dynamical perturbations. The evolution of a suite of twenty initially identical clusters is highly stochastic, with the supernova enriching over 10 G-dwarfs in some clusters, and none at all in others. Typically only ~25 per cent of clusters contain enriched, unperturbed singletons, and usually only 1 - 2 per cluster (from a total of 96 G-dwarfs in each cluster). The initial conditions for star formation do not strongly affect the results, although a higher fraction of supervirial (expanding) clusters would contain enriched G-dwarfs if the supernova occurred earlier than 6.6Myr. If we sum together simulations with identical initial conditions, then ~1 per cent of all G-dwarfs in our simulations are enriched, unperturbed singletons.Comment: 14 pages, 5 figures, accepted for publication in MNRA
    corecore