38 research outputs found

    CD8+ T Cells from SIV Elite Controller Macaques Recognize Mamu-B*08-Bound Epitopes and Select for Widespread Viral Variation

    Get PDF
    Background. It is generally accepted that CD8(+) T cell responses play an important role in control of immunodeficiency virus replication. the association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8(+) cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8(+) cells, implicating that these cells actively suppress viral replication in ECs. Methods and Findings. Here we show that three ECs in that study made at least seven robust CD8(+) T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8(+) T cells in all of the newly identified epitopes in a cohort of chronically infected macaques. Conclusions. Together, our data suggest that Mamu-B*08-restricted CD8(+) T cell responses effectively control replication of pathogenic SIV(mac)239. All seven regions encoding Mamu-B*08-restricted CD8(+) T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8(+) T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8(+) T cell-mediated control of HIV replication in humans.National Institutes of Health (NIH)National Center for Research Resources (NCRR)Japan Health Sciences FoundationKent State University Research CouncilOhio Board of Regents Research ChallengeResearch Facilities ImprovementUniv Wisconsin, WNPRC, Madison, WI 53706 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilUniv Wisconsin, Dept Pathol & Lab Med, Madison, WI USALa Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA USAUniv Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Oxford OX3 9DU, EnglandKent State Univ, Dept Biol Sci, Kent, OH 44242 USAUniv S Carolina, Dept Biol Sci, Columbia, SC 29208 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilNational Institutes of Health (NIH): HHSN266200400088CNational Institutes of Health (NIH): R01 AI049120National Institutes of Health (NIH): R01 AI052056National Institutes of Health (NIH): R24 RR015371National Institutes of Health (NIH): R24 RR016038National Institutes of Health (NIH): R21 AI068586National Center for Research Resources (NCRR): P51 RR000167Japan Health Sciences Foundation: GM43940Research Facilities Improvement: RR15459-01Research Facilities Improvement: RR020141-01Web of Scienc

    Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

    Get PDF
    The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses

    The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype

    Get PDF
    Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques

    CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-γ at 5-7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2017-09-12T13:11:11Z No. of bitstreams: 1 ricardo_galler_etal_IOC_2010.pdf: 953535 bytes, checksum: f84d77c95a4d65cf2f33f15963068d41 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2017-09-12T13:34:25Z (GMT) No. of bitstreams: 1 ricardo_galler_etal_IOC_2010.pdf: 953535 bytes, checksum: f84d77c95a4d65cf2f33f15963068d41 (MD5)Made available in DSpace on 2017-09-12T13:34:25Z (GMT). No. of bitstreams: 1 ricardo_galler_etal_IOC_2010.pdf: 953535 bytes, checksum: f84d77c95a4d65cf2f33f15963068d41 (MD5) Previous issue date: 2010Fundação Oswaldo Cruz. Bio-Manguinhos. Vice-Diretoria de Desenvolvimento Tecnológico. Rio de Janeiro, RJ, Brasil.University of Wisconsin-Madison. Department of Pathology. Laboratory Medicine. Madison, WI, USA.Fundação Oswaldo Cruz. Bio-Manguinhos. Vice-Diretoria de Desenvolvimento Tecnológico. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ. Brasil.University of Wisconsin-Madison. Department of Pathology. Laboratory Medicine. Madison, WI, USA.University of Wisconsin-Madison. Department of Pathology. Laboratory Medicine. Madison, WI, USA.University of Wisconsin-Madison. Department of Pathology. Laboratory Medicine. Madison, WI, USA.University of Wisconsin-Madison. Department of Pathology. Laboratory Medicine. Madison, WI, USA.University of Wisconsin-Madison. Department of Pathology. Laboratory Medicine. Madison, WI, USA.The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (days 5-7) before the development of classical antigen-specific CD8(+) and CD4(+) T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post-vaccination activated CD8(+) gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4(+) T cells produced IFN-γ and TNF-α at day 7 post-vaccination. This early IFN-γ production was also induced after vaccination with recombinant YF-17D (rYF-17D), but was not observed after recombinant Adenovirus type 5 (rAd5) vaccination. Early IFN-γ production, therefore, might be an important aspect of yellow fever vaccination

    Extraepitopic Compensatory Substitutions Partially Restore Fitness to Simian Immunodeficiency Virus Variants That Escape from an Immunodominant Cytotoxic-T-Lymphocyte Response

    No full text
    Selection for escape mutant immunodeficiency viruses by cytotoxic T lymphocytes (CTL) has been well characterized and may be associated with disease progression. CTL epitopes accrue escape mutations at different rates in vivo. Interestingly, certain high-frequency CTL do not select for escape until the chronic phase of infection. Here we show that mutations conferring escape from immunodominant CTL directed against an epitope in the viral Gag protein are strongly associated with extraepitopic mutations in gag in vivo. The extraepitopic mutations partially restore in vitro replicative fitness of viruses bearing the escape mutations. Constraints on epitope sequences may therefore play a role in determining the rate of escape from CTL responses in vivo

    Mamu-I

    No full text
    The rhesus macaque is an important animal model for several human diseases and organ transplantation. Therefore, definition of the MHC of this species is crucial to the development of these models. Unfortunately, unlike humans, lymphocytes from a single rhesus macaque express up to 12 different MHC class I cDNAs. From which locus these various alleles are derived is unclear. In our attempts to define the MHC class I loci of the rhesus macaque, we have identified an unusual MHC class I locus, Mamu-I. We isolated 26 I locus alleles from three different macaque species but not from three other Cercopithecine genera, suggesting that the I locus is the result of a recent duplication of the B locus occurring after the divergence of macaques from the ancestor of the other extant Cercopithecine genera. Mamu-I mRNA transcripts were detected in all tissues examined and Mamu-I protein was produced in rhesus B lymphoblastoid cell lines. Furthermore, Mamu-I protein was detected by flow cytometry on the surface of human 721.221 cells transfected with Mamu-I. In contrast to the polymorphism present at this locus, there is unusually low sequence variability, with the mean number of nucleotide differences between alleles being only 3.6 nt. Therefore, Mamu-I is less variable than any other polymorphic MHC class I locus described to date. Additionally, no evidence for positive selection on the peptide binding region was observed. Together, these results suggest that Mamu-I is an MHC class I locus in primates that has features of both classical and nonclassical loci

    Pol-Specific CD8+ T Cells Recognize Simian Immunodeficiency Virus-Infected Cells Prior to Nef-Mediated Major Histocompatibility Complex Class I Downregulationâ–¿

    No full text
    Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells

    The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques – implications for recombinant vaccine design

    No full text
    The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation (TAP) proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in 6 Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development

    The high frequency Indian rhesus macaque MHC class I molecule, Mamu-B01, does not appear to be involved in CD8+ T lymphocyte responses to SIVmac239

    No full text
    Although the SIV-infected Indian rhesus macaque (Macaca mulatta) is the animal model most widely used for studying HIV infection, our current understanding of the functional macaque MHC class I molecules is limited. To date, SIV-derived CD8+ T lymphocyte epitopes from only three high frequency macaque MHC class I molecules have been extensively characterized. In this study, we defined the peptide-binding properties of the high frequency Indian rhesus macaque class I molecule, Mamu-B*01 ( approximately 26%). We first identified a preliminary binding motif by eluting and sequencing endogenously bound Mamu-B*01 ligands. We further characterized the peptide-binding characteristics using panels of single amino acid substitution analogs. Using this detailed motif, 507 peptides derived from SIV(mac)239 were identified and tested for their Mamu-B*01 binding capacity. Surprisingly, only 11 (2.2%) of these motif-containing peptides bound with IC50 values < or =500 nM. We assessed the immunogenicity of these peptides using freshly isolated PBMC from ten Mamu-B*01+ SIV-infected rhesus macaques in IFN-gamma ELISPOT and IFN-gamma/TNF-alpha intracellular cytokine staining assays. Lymphocytes from these SIV-infected macaques responded to none of these peptides. Furthermore, there was no sequence variation indicative of escape in the regions of the virus that encoded these peptides. Additionally, we could not confirm previous reports of SIV-derived Mamu-B*01-restricted epitopes in the Env and Gag proteins. Our results suggest that the high frequency MHC class I molecule, Mamu-B*01, is not involved in SIV-specific CD8+ T lymphocyte responses
    corecore