943 research outputs found
Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV
In this updated and expanded version of our delayed Comment we show that the
np backward cross section, as presented by the Uppsala group, is seriously
flawed (more than 25 sd.). The main reason is the incorrect normalization of
the data. We show also that their extrapolation method, used to determine the
charged piNN coupling constant, is a factor of about 10 less accurate than
claimed by Ericson et al. The large extrapolation error makes the determination
of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended
version of the Comment published in Phys. Rev. Letters 81, 5253 (1998
Extraction of the coupling constant from NN scattering data
We reexamine Chew's method for extracting the coupling constant from
np differential cross section measurements. Values for this coupling are
extracted below 350 MeV, in the potential model region, and up to 1 GeV. The
analyses to 1~GeV have utilized 55 data sets. We compare these results to those
obtained via mapping techniques. We find that these two methods give
consistent results which are in agreement with previous Nijmegen
determinations.Comment: 12 pages of text plus 2 figures. Revtex file and postscript figures
available via anonymous FTP at ftp://clsaid.phys.vt.edu/pub/n
Extraction of the D13(1520) photon-decay couplings from pion- and eta-photoproduction data
We compare results for the D13(1520) photon-decay amplitudes determined in
analyses of eta- and pion-photoproduction data. The ratio of helicity
amplitudes (A_3/2 / A_1/2), determined from eta-photoproduction data, is quite
different from that determined in previous analyses of pion-photoproduction
data. We consider how strongly the existing pion-photoproduction data constrain
both this ratio and the individual photon-decay amplitudes.Comment: 7 pages, 2 figure
An updated analysis of NN elastic scattering data to 1.6 GeV
An energy-dependent and set of single-energy partial-wave analyses of
elastic scattering data have been completed. The fit to 1.6~GeV has been
supplemented with a low-energy analysis to 400 MeV. Using the low-energy fit,
we study the sensitivity of our analysis to the choice of coupling
constant. We also comment on the possibility of fitting data alone. These
results are compared with those found in the recent Nijmegen analyses. (Figures
may be obtained from the authors upon request.)Comment: 17 pages of text, VPI-CAPS-7/
Updated resonance photo-decay amplitudes to 2 GeV
We present the results of an energy-dependent and set of single-energy
partial-wave analyses of single-pion photoproduction data. These analyses
extend from threshold to 2 GeV in the laboratory photon energy, and update our
previous analyses to 1.8 GeV. Photo-decay amplitudes are extracted for the
baryon resonances within this energy range. We consider two photoproduction sum
rules and the contributions of two additional resonance candidates found in our
most recent analysis of elastic scattering data. Comparisons are made
with previous analyses.Comment: Revtex, 26 pages, 3 figures. Postscript figures available from
ftp://clsaid.phys.vt.edu/pub/pr or indirectly from
http://clsaid.phys.vt.edu/~CAPS
Lessons to be learned from the coherent photoproduction of pseudoscalar mesons
We study the coherent photoproduction of pseudoscalar mesons---particularly
of neutral pions---placing special emphasis on the various sources that put
into question earlier nonrelativistic-impulse-approximation calculations. These
include: final-state interactions, relativistic effects, off-shell ambiguities,
and violations to the impulse approximation. We establish that, while
distortions play an essential role in the modification of the coherent cross
section, the uncertainty in our results due to the various choices of
optical-potential models is relatively small (of at most 30%). By far the
largest uncertainty emerges from the ambiguity in extending the many
on-shell-equivalent representations of the elementary amplitude off the mass
shell. Indeed, relativistic impulse-approximation calculations that include the
same pionic distortions, the same nuclear-structure model, and two sets of
elementary amplitudes that are identical on-shell, lead to variations in the
magnitude of the coherent cross section by up to factors of five. Finally, we
address qualitatively the assumption of locality implicit in most
impulse-approximation treatments, and suggest that the coherent reaction
probes---in addition to the nuclear density---the polarization structure of the
nucleus.Comment: Manuscript is 27 pages long and includes 11 eps figure
Nonequilibrium stationary states and equilibrium models with long range interactions
It was recently suggested by Blythe and Evans that a properly defined steady
state normalisation factor can be seen as a partition function of a fictitious
statistical ensemble in which the transition rates of the stochastic process
play the role of fugacities. In analogy with the Lee-Yang description of phase
transition of equilibrium systems, they studied the zeroes in the complex plane
of the normalisation factor in order to find phase transitions in
nonequilibrium steady states. We show that like for equilibrium systems, the
``densities'' associated to the rates are non-decreasing functions of the rates
and therefore one can obtain the location and nature of phase transitions
directly from the analytical properties of the ``densities''. We illustrate
this phenomenon for the asymmetric exclusion process. We actually show that its
normalisation factor coincides with an equilibrium partition function of a walk
model in which the ``densities'' have a simple physical interpretation.Comment: LaTeX, 23 pages, 3 EPS figure
- …