100 research outputs found

    Carbohydrate-based peptidomimetics targeting neuropilin-1: synthesis, molecular docking study and in vitro biological activities

    Get PDF
    International audienceNeuropilin-1 (NRP-1), a transmembrane glycoprotein acting as a co-receptor of VEGF-A, is expressed by cancer and angiogenic endothelial cells and is involved in the angiogenesis process. Taking advantage of functionalities and stereodiversities of sugar derivatives, the design and the synthesis of carbohydrate based peptidomimetics are here described. One of these compounds (56) demonstrated inhibition of VEGF-A165 binding to NRP-1 (IC50 = 39 μM) and specificity for NRP-1 over VEGF-R2. Biological evaluations were performed on human umbilical vein endothelial cells (HUVECs) through activation of downstream proteins (AKT and ERK phosphorylation), viability/proliferation assays and in vitro measurements of anti-angiogenic abilities

    Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes

    Get PDF
    In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA

    Mitochondrial membrane lipidome defines yeast longevity

    Get PDF
    Our studies revealed that lithocholic acid (LCA), a bile acid, is a potent anti‐aging natural compound that in yeast cultured under longevity‐extending caloric restriction (CR) conditions acts in synergy with CR to enable a significant further increase in chronological lifespan. Here, we investigate a mechanism underlying this robust longevity‐extending effect of LCA under CR. We found that exogenously added LCA enters yeast cells, is sorted to mitochondria, resides mainly in the inner mitochondrial membrane, and also associates with the outer mitochondrial membrane. LCA elicits an age‐related remodeling of glycerophospholipid synthesis and movement within both mitochondrial membranes, thereby causing substantial changes in mitochondrial membrane lipidome and triggering major changes in mitochondrial size, number and morphology. In synergy, these changes in the membrane lipidome and morphology of mitochondria alter the age‐related chronology of mitochondrial respiration, membrane potential, ATP synthesis and reactive oxygen species homeostasis. The LCA‐driven alterations in the age‐related dynamics of these vital mitochondrial processes extend yeast longevity. In sum, our findings suggest a mechanism underlying the ability of LCA to delay chronological aging in yeast by accumulating in both mitochondrial membranes and altering their glycerophospholipid compositions. We concluded that mitochondrial membrane lipidome plays an essential role in defining yeast longevity

    Characterization of Blood Immune Cells in Patients With Decompensated Cirrhosis Including ACLF

    Get PDF
    Background and Aims: Patients with cirrhosis and acute-on-chronic liver failure (ACLF) have immunosuppression, indicated by an increase in circulating immune-deficient monocytes. The aim of this study was to investigate simultaneously the major blood-immune cell subsets in these patients. Material and Methods: Blood taken from 67 patients with decompensated cirrhosis (including 35 critically ill with ACLF in the intensive care unit), and 12 healthy subjects, was assigned to either measurements of clinical blood counts and microarray (genomewide) analysis of RNA expression in whole-blood; microarray (genomewide) analysis of RNA expression in blood neutrophils; or assessment of neutrophil antimicrobial functions. Results: Several features were found in patients with ACLF and not in those without ACLF. Indeed, clinical blood count measurements showed that patients with ACLF were characterized by leukocytosis, neutrophilia, and lymphopenia. Using the CIBERSORT method to deconvolute the whole-blood RNA-expression data, revealed that the hallmark of ACLF was the association of neutrophilia with increased proportions of macrophages M0-like monocytes and decreased proportions of memory lymphocytes (of B-cell, CD4 T-cell lineages), CD8 T cells and natural killer cells. Microarray analysis of neutrophil RNA expression revealed that neutrophils from patients with ACLF had a unique phenotype including induction of glycolysis and granule genes, and downregulation of cell-migration and cell-cycle genes. Moreover, neutrophils from these patients had defective production of the antimicrobial superoxide anion. Conclusions: Genomic analysis revealed that, among patients with decompensated cirrhosis, those with ACLF were characterized by dysregulation of blood immune cells, including increases in neutrophils (that had a unique phenotype) and macrophages M0-like monocytes, and depletion of several lymphocyte subsets (including memory lymphocytes). All these lymphocyte alterations, along with defective neutrophil superoxide anion production, may contribute to immunosuppression in ACLF, suggesting targets for future therapies

    Optimized low-dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment.

    Get PDF
    The current standard of care for colorectal cancer (CRC) is a combination of chemotherapeutics, often supplemented with targeted biological drugs. An urgent need exists for improved drug efficacy and minimized side effects, especially at late-stage disease. We employed the phenotypically driven therapeutically guided multidrug optimization (TGMO) technology to identify optimized drug combinations (ODCs) in CRC. We identified low-dose synergistic and selective ODCs for a panel of six human CRC cell lines also active in heterotypic 3D co-culture models. Transcriptome sequencing and phosphoproteome analyses showed that the mechanisms of action of these ODCs converged toward MAP kinase signaling and cell cycle inhibition. Two cell-specific ODCs were translated to in vivo mouse models. The ODCs reduced tumor growth by ~80%, outperforming standard chemotherapy (FOLFOX). No toxicity was observed for the ODCs, while significant side effects were induced in the group treated with FOLFOX therapy. Identified ODCs demonstrated significantly enhanced bioavailability of the individual components. Finally, ODCs were also active in primary cells from CRC patient tumor tissues. Taken together, we show that the TGMO technology efficiently identifies selective and potent low-dose drug combinations, optimized regardless of tumor mutation status, outperforming conventional chemotherapy

    Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes

    Get PDF
    In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA

    Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity

    Get PDF
    Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary β subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.</p

    Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity

    Get PDF
    Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary β subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.</p

    Regional variability in peatland burning at mid- to high-latitudes during the Holocene

    Get PDF
    Acknowledgements This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT Iniciación 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of Münster, and Bavarian University Centre for Latin America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewedPostprin
    corecore