131 research outputs found

    Addressing excess risk of overdose among recently incarcerated people in the USA: Harm reduction interventions in correctional settings

    Get PDF
    Purpose-The purpose of this paper is to discuss overdose among those with criminal justice experience and recommend harm reduction strategies to lessen overdose risk among this vulnerable population. Design/methodology/approach-Strategies are needed to reduce overdose deaths among those with recent incarceration. Jails and prisons are at the epicenter of the opioid epidemic but are a largely untapped setting for implementing overdose education, risk assessment, medication assisted treatment, and naloxone distribution programs. Federal, state, and local plans commonly lack corrections as an ingredient in combating overdose. Harm reduction strategies are vital for reducing the risk of overdose in the post-release community. Findings-Therefore, the authors recommend that the following be implemented in correctional settings: expansion of overdose education and naloxone programs; establishment of comprehensive medication assisted treatment programs as standard of care; development of corrections-specific overdose risk assessment tools; and increased collaboration between corrections entities and community-based organizations. Originality/value-In this policy brief the authors provide recommendations for implementing harm reduction approaches in criminal justice settings. Adoption of these strategies could reduce the number of overdoses among those with recent criminal justice involvement

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    An eddy-correlation measurement of NO2 flux to vegetation and comparison to O3 flux

    Full text link
    Eddy-correlation measurements with a newly developed fast-response NOx sensor indicate that the deposition velocity at a height of about 6m above a soybean field has a maximum value near 0.6cms-1 for NOx and is usually about 2/3 ofthat found for ozone. In these studies, over 90% of the NOx is NO2. The corresponding minimum surface resistance for NOx calculated as the quantity remaining after atmospheric resistances are subtracted is about 1.3 s cm-1, which is larger than expected on the basis of leaf stomatal resistance alone. Emission of NO from sites in the plant canopy and soil where NO2 is deposited and reduced to NO or release of NOx as a result of biological activity may have lessened the downward fluxes of NOx as measured. During windy conditions at night, surface resistances are found to have values of about 15scm-1 for NOx (again, greater than 90% NO2) and 1.8scm-1 for O3, corresponding to deposition velocities of 0.05cms-1 and 0.3cms-1, respectively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24138/1/0000395.pd

    Detection of Borrelia-specific 16S rRNA sequence in total RNA extracted from Ixodes ricinus ticks

    Get PDF
    A reverse transcriptase - polymerase chain reaction based assay for Borrelia species detection in ticks was developed. The method was based on amplification of 552 nucleotide bases long sequence of 16S rRNA, targeted by Borrelia specific primers. In the present study, total RNA extracted from Ixodes ricinus ticks was used as template. The results showed higher sensitivity for Borrelia detection as compared to standard dark-field microscopy. Method specificity was confirmed by cloning and sequencing of obtained 552 base pairs long amplicons. Phylogenetic analysis of obtained sequences showed that they belong to B. lusitaniae and B. afzelii genospecies. RT-PCR based method presented in this paper could be very useful as a screening test for detecting pathogen presence, especially when in investigations is required extraction of total RNA from ticks

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Experimental progress in positronium laser physics

    Get PDF

    Mapping and characterization of structural variation in 17,795 human genomes

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing
    corecore