469 research outputs found

    Confinement of injected silicon in the Alcator A tokamak

    Get PDF

    Two complementary approaches for intracellular delivery of exogenous enzymes.

    Get PDF
    Intracellular delivery of biologically active proteins remains a formidable challenge in biomedical research. Here we show that biomedically relevant enzymes can be delivered into cells using a new DNA transfection reagent, lipofectamine 3000, allowing assessment of their intracellular functions. We also show that the J774.2 macrophage cell line exhibits unusual intracellular uptake of structurally and functionally distinct enzymes providing a convenient, reagent-free approach for evaluation of intracellular activities of enzymes

    Ground State Properties of the Doped 3-Leg t-J Ladder

    Full text link
    Results for a doped 3-leg t-J ladder obtained using the density matrix renormalization group are reported. At low hole doping, the holes form a dilute gas with a uniform density. The momentum occupation of the odd band shows a sharp decrease at a large value of k_F similar to the behavior of a lightly doped t-J chain, while the even modes appear gapped. The spin-spin correlations decay as a power law consistent with the absence of a spin gap, but the pair field correlations are negligible. At larger doping we find evidence for a spin gap and as x increases further we find 3-hole diagonal domain walls. In this regime there are pair field correlations and the internal pair orbital has d_x^2-y^2 - like symmetry. However, the pair field correlations appear to fall exponentially at large distances.Comment: 14 pages, 11 postscript figure

    Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm

    Full text link
    A lot of research effort has been put into community detection from all corners of academic interest such as physics, mathematics and computer science. In this paper I have proposed a Bi-Objective Genetic Algorithm for community detection which maximizes modularity and community score. Then the results obtained for both benchmark and real life data sets are compared with other algorithms using the modularity and MNI performance metrics. The results show that the BOCD algorithm is capable of successfully detecting community structure in both real life and synthetic datasets, as well as improving upon the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text overlap with arXiv:0906.061

    Dual Vortex Theory of Strongly Interacting Electrons: Non-Fermi Liquid to the (Hard) Core

    Full text link
    As discovered in the quantum Hall effect, a very effective way for strongly-repulsive electrons to minimize their potential energy is to aquire non-zero relative angular momentum. We pursue this mechanism for interacting two-dimensional electrons in zero magnetic field, by employing a representation of the electrons as composite bosons interacting with a Chern-Simons gauge field. This enables us to construct a dual description in which the fundamental constituents are vortices in the auxiliary boson fields. The resulting formalism embraces a cornucopia of possible phases. Remarkably, superconductivity is a generic feature, while the Fermi liquid is not -- prompting us to conjecture that such a state may not be possible when the interactions are sufficiently strong. Many aspects of our earlier discussions of the nodal liquid and spin-charge separation find surprising incarnations in this new framework.Comment: Modified dicussion of the hard-core model, correcting several mistake

    The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics

    Full text link
    The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero-temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spectrum for blackbody radiation in an inertial frame from the thermal radiation spectrum in an accelerating frame. Here this connection between zero-point radiation and thermal radiation is illustrated for a scalar radiation field in a Rindler frame undergoing relativistic uniform proper acceleration through flat spacetime in two spacetime dimensions. The analysis indicates that the Planck radiation spectrum for thermal radiation follows from zero-point radiation and the structure of relativistic spacetime in classical physics.Comment: 21 page

    Energy landscape, two-level systems and entropy barriers in Lennard-Jones clusters

    Full text link
    We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clusters containing up to 80 argon atoms and to locate many pairs of minima with the right characteristics to form two-level systems (TLS). The true TLS are singled out by calculating the ground-state tunneling splitting. The entropic contribution to all barriers is evaluated and discussed.Comment: 4 pages, RevTex, 2 PostScript figure

    Spin Ordering and Quasiparticles in Spin Triplet Superconducting Liquids

    Full text link
    Spin ordering and its effect on low energy quasiparticles in a p-wave superconducting liquid are investigated. We show that there is a new 2D p-wave superconducting liquid where the ground state is rotation invariant. In quantum spin disordered liquids, the low energy quasiparticles are bound states of the bare Bogolubov- De Gennes ({\em BdeG}) quasiparticles and zero energy skyrmions, which are charge neutral bosons at the low energy limit. Further more, spin collective excitations are fractionalized ones carrying a half spin and obeying fermionic statistics. In thermally spin disordered limits, the quasi-particles are bound states of bare {\em BdeG} quasi-particles. The latter situation can be realized in some layered p-wave superconductors where the spin-orbit coupling is weak.Comment: 5 pages, no figures; published versio

    Metamagnetic Quantum Criticality in Sr3Ru2O7

    Get PDF
    We consider the metamagnetic transition in the bilayer ruthenate, Sr3Ru2O7{\rm Sr_3Ru_2O_7}, and use this to motivate a renormalization group treatment of a zero-temperature quantum-critical end-point. We summarize the results of mean field theory and give a pedagogical derivation of the renormalization-group equations. These are then solved to yield numerical results for the susceptibility, the specific heat and the resistivity exponent which can be compared with measured data on Sr3Ru2O7{\rm Sr_3Ru_2O_7} to provide a powerful test for the standard framework of metallic quantum criticality. The observed approach to the critical point is well-described by our theory explaining a number of unusual features of experimental data. The puzzling behaviour very near to the critical point itself, though, is not accounted for by this, or any other theory with a Fermi surface
    • …
    corecore